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Code Generation for Object Detection Using YOLO v2

Code Generation for Object Detection Using YOLO v2

This example shows how to generate CUDA® code for the “Object Detection Using YOLO
v2 Deep Learning” on page 1-30 example from the Computer Vision Toolbox™.

Prerequisites

* CUDA enabled NVIDIA® GPU with compute capability 3.2 or higher.
* NVIDIA CUDA toolkit and driver.

* NVIDIA cuDNN library v7 or higher.

* OpenCV 3.1.0 libraries for video read and image display operations.

* Environment variables for the compilers and libraries. For information on the
supported versions of the compilers and libraries, see “Third-party Products” (GPU
Coder). For setting up the environment variables, see “Setting Up the Prerequisite
Products” (GPU Coder).

* Deep Learning Toolbox™ for using SeriesNetwork objects.

* GPU Coder™ for generating CUDA code.

* GPU Coder Interface for Deep Learning Libraries support package. To install this
support package, use the Add-On Explorer.

Verify the GPU Environment

Use the coder.checkGpulInstall function and verify that the compilers and libraries
needed for running this example are set up correctly.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Get the Pretrained DAGNetwork
net = getYOLOv2();

The DAG network contains 150 layers including convolution, ReLU, and batch
normalization layers along with the YOLO v2 transform and YOLO v2 output layers. Use
the command net.Layers to see all the layers of the network.

net.Layers
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About the 'yolov2_detect' Function

The yolov2_detect.m function takes an image input and run the detector on the image
using the deep learning network saved in yolov2ResNet50VehicleExample.mat file. The
function loads the network object from yolov2ResNet50VehicleExample.mat into a
persistent variable mynet. On subsequent calls to the function, the persistent object is
reused for detection.

type('yolov2 detect.m')

function outImg = yolov2 detect(in)
% Copyright 2018-2019 The MathWorks, Inc.

A persistent object yolov20bj is used to load the YOLOv20bjectDetector object.
At the first call to this function, the persistent object is constructed and
setup. When the function is called subsequent times, the same object is reused
to call detection on inputs, thus avoiding reconstructing and reloading the
network object.

persistent yolov20bj;

o° o o° o° o°

if isempty(yolov20bj)
yolov20bj = coder.loadDeepLearningNetwork('yolov2ResNet50VehicleExample.mat');
end

% pass in input
[bboxes,~, labels] = yolov20bj.detect(in, 'Threshold',0.5);

% Annotate detections in the image.
outImg = insertObjectAnnotation(in, 'rectangle’,bboxes, labels);

Run MEX Code Generation for 'yolov2_detect' Function

To generate CUDA code from the design file yolov2 detect.m, create a GPU code
configuration object for a MEX target and set the target language to C++. Use the
coder.DeeplLearningConfig function to create a CuDNN deep learning configuration
object and assign it to the DeepLearningConfig property of the GPU code configuration
object. Run the codegen command specifying an input of size [224,224,3]. This value
corresponds to the input layer size of YOLOv2.

cfg = coder.gpuConfig('mex"');
cfg.TargetLang = 'C++';


matlab:edit(fullfile(matlabroot,'examples','deeplearning_shared',main','yolov2_detect.m')))

Code Generation for Object Detection Using YOLO v2

cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
codegen -config cfg yolov2 detect -args {ones(224,224,3,'uint8')} -report

Code generation successful: To view the report, open('codegen/mex/yolov2 detect/html/r¢

Run the Generated MEX

Set up the video file reader and read the input video. Create a video player to display the
video and the output detections.

videoFile = 'highway lanechange.mp4';
videoFreader = vision.VideoFileReader(videoFile, 'VideoOutputDataType', 'uint8"');
depVideoPlayer = vision.DeployableVideoPlayer('Size', 'Custom', 'CustomSize',[640 480]);

Read the video input frame-by-frame and detect the vehicles in the video using the
detector.

cont = ~isDone(videoFreader);
while cont

I = step(videoFreader);

in = imresize(I,[224,224]);

out = yolov2 detect mex(in);

step(depVideoPlayer, out);

cont = ~isDone(videoFreader) && isOpen(depVideoPlayer); % Exit the loop if the vide
end
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Track Vehicles Using Lidar: From Point Cloud to Track

List

This example shows you how to track vehicles using measurements from a lidar sensor
mounted on top of an ego vehicle. Lidar sensors report measurements as a point cloud.
The lidar data used in this example is recorded from a highway driving scenario. In this
example, you use the recorded data to track vehicles with a joint probabilistic data
association (JPDA) tracker and an interacting multiple model (IMM) approach.

3-D Bounding Box Detector Model

Due to high resolution capabilities of the lidar sensor, each scan from the sensor contains
a large number of points, commonly known as a point cloud. This raw data must be
preprocessed to extract objects of interest, such as cars, cyclists, and pedestrians. For
more details about segmentation of lidar data into objects such as the ground plane and
obstacles, refer to the “Ground Plane and Obstacle Detection Using Lidar” (Automated
Driving Toolbox) example. In this example, the point clouds belonging to obstacles are
further classified into clusters using the pcsegdist function, and each cluster is
converted to a bounding box detection with the following format:

[.r' yzlw Fr]

x, W and = refer to the x-, y- and z-positions of the bounding box and {, #* and /: refer to its
length, width, and height, respectively.

The bounding box is fit onto each cluster by using minimum and maximum of coordinates
of points in each dimension. The detector is implemented by a supporting class
HelperBoundingBoxDetector, which wraps around point cloud segmentation and
clustering functionalities. An object of this class accepts a pointCloud input and returns
a list of objectDetection objects with bounding box measurements.

The diagram shows the processes involved in the bounding box detector model and the
Computer Vision Toolbox™ functions used to implement each process. It also shows the
properties of the supporting class that control each process.
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HelperBoundingBoxDetector
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Load data if unavailable. The lidar data is stored as a cell array of
pointCloud objects.
if ~exist('lidarData', 'var')

% Specify initial and final time for simulation.

initTime = 0;

finalTime = 35;

[lidarData, imageData] = loadLidarAndImageData(initTime,finalTime);
end

% Set random seed to generate reproducible results.
S = rng(2018);

% A bounding box detector model.
detectorModel = HelperBoundingBoxDetector(...

'XLimits',[-50 75],... min-max
'YLimits',[-5 5],... min-max
'ZLimits',[-2 5],... min-max

minimum Euclidian distance

minimum points per cluster

measurement noise in detection report
maximum distance of ground points from groun

'SegmentationMinDistance',1.6,...
'MinDetectionsPerCluster',1, ...
'MeasurementNoise',eye(6), ...
'GroundMaxDistance',0.3);

0° 0° o° 0 o° o° o°

Target State and Sensor Measurement Model

The first step in tracking an object is defining its state, and the models that define the
transition of state and the corresponding measurement. These two sets of equations are
collectively known as the state-space model of the target. To model the state of vehicles
for tracking using lidar, this example uses a cuboid model with following convention:

x = [wpin 0 1 w h]
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Tiin refers to the portion of the state that controls the kinematics of the motion center,
and # is the yaw angle. The length, width, height of the cuboid are modeled as a
constants, whose estimates evolve in time during correction stages of the filter.

In this example, you use two state-space models: a constant velocity (cv) cuboid model
and a constant turn-rate (ct) cuboid model. These models differ in the way they define the
kinematic part of the state, as described below:

To=[rdyyziOlwh
Ta=[crdyyfziflwh

For information about their state transition, refer to the helperConstvelCuboid and
helperConstturnCuboid functions used in this example.

The helperCvmeasCuboid and helperCtmeasCuboid measurement models describe
how the sensor perceives the constant velocity and constant turn-rate states respectively,
and they return bounding box measurements. Because the state contains information
about size of the target, the measurement model includes the effect of center-point offset
and bounding box shrinkage, as perceived by the sensor, due to effects like self-occlusion
[1]. This effect is modeled by a shrinkage factor that is directly proportional to the
distance from the tracked vehicle to the sensor.

The image below demonstrates the measurement model operating at different state-space
samples. Notice the modeled effects of bounding box shrinkage and center-point offset as
the objects move around the ego vehicle.
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Top View

Set Up Tracker and Visualization

The image below shows the complete workflow to obtain a list of tracks from a pointCloud
input.
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Now, set up the tracker and the visualization used in the example.

A joint probabilistic data association tracker (trackerJPDA) coupled with an IMM filter
(trackingIMM) is used to track objects in this example. The IMM filter uses a constant
velocity and constant turn model and is initialized using the supporting function,
helperInitIMMFilter, included with this example. The IMM approach helps a track to
switch between motion models and thus achieve good estimation accuracy during events
like maneuvering or lane changing. Set the HasDetectableTrackIDsInput property of
the tracker as true, which enables you to specify a state-dependent probability of
detection. The detection probability of a track is calculated by the
helperCalcDetectability function, listed at the end of this example.

assignmentGate = [10 100];
confThreshold = [7 10];
delThreshold = [8 10];

Kc = le-5;

Assignment threshold;

Confirmation threshold for history logic
Deletion threshold for history logic
False-alarm rate per unit volume

o® o° o° o°

% IMM filter initialization function
filterInitFcn = @helperInitIMMFilter;

% A joint probabilistic data association tracker with IMM filter

tracker = trackerJPDA('FilterInitializationFcn',filterInitFcn,...
'TrackLogic', 'History', ...
"AssignmentThreshold',assignmentGate,...
'ClutterDensity’',Kc, ...
'ConfirmationThreshold',confThreshold, ...
'DeletionThreshold',delThreshold,...
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'HasDetectableTrackIDsInput', true,...
'InitializationThreshold',0);

The visualization is divided into these main categories:

1 Lidar Preprocessing and Tracking - This display shows the raw point cloud,
segmented ground, and obstacles. It also shows the resulting detections from the
detector model and the tracks of vehicles generated by the tracker.

2 Ego Vehicle Display - This display shows the 2-D bird's-eye view of the scenario. It
shows the obstacle point cloud, bounding box detections, and the tracks generated by
the tracker. For reference, it also displays the image recorded from a camera
mounted on the ego vehicle and its field of view.

3 Tracking Details - This display shows the scenario zoomed around the ego vehicle. It
also shows finer tracking details, such as error covariance in estimated position of
each track and its motion model probabilities, denoted by cv and ct.

% Create display

displayObject = HelperLidarExampleDisplay(imageData{1},...
'"PositionIndex',[1 3 61,...
'VelocityIndex',[2 4 71,...
'DimensionIndex',[9 10 111,...
'YawIndex',8,...
'MovieName','',... % Specify a movie name to record a movie.
'RecordGIF',false); % Specify true to record new GIFs

Loop Through Data

Loop through the recorded lidar data, generate detections from the current point cloud
using the detector model and then process the detections using the tracker.

% Start time
% Time step
% Initiate all tracks.
allTracks = struct([]);

% Initiate variables for comparing MATLAB and MEX simulation.
numTracks = zeros(numel(lidarData),2);

% Loop through the data
for i = 1l:numel(lidarData)
% Update time
time = time + dT;
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% Get current lidar scan
currentlLidar = lidarData{i};

% Generator detections from lidar scan.
[detections,obstacleIndices,groundIndices, croppedIndices] = detectorModel(currentL

% Calculate detectability of each track.
detectableTracksInput = helperCalcDetectability(allTracks,[1 3 6]);

% Pass detections to track.
[confirmedTracks,tentativeTracks,allTracks] = tracker(detections,time,detectableTr:
numTracks(i,1l) = numel(confirmedTracks);

% Get model probabilities from IMM filter of each track using

% getTrackFilterProperties function of the tracker.

modelProbs = zeros(2,numel(confirmedTracks));

for k = 1l:numel(confirmedTracks)
cl = getTrackFilterProperties(tracker,confirmedTracks(k).TrackID, 'ModelProbabi
modelProbs(:,k) = c1{1};

end

% Update display

if isvalid(displayObject.PointCloudProcessingDisplay.ObstaclePlotter)
% Get current image scan for reference image
currentImage = imageData{i};

% Update display object
displayObject(detections,confirmedTracks, currentLidar,obstaclelndices,...
groundIndices, croppedIndices,currentImage,modelProbs);
end

% Snap a figure at time = 18
if abs(time - 18) < dT/2
snapnow(displayObject);
end
end

% Write movie if requested

if ~isempty(displayObject.MovieName)
writeMovie(displayObject);

end

% Write new GIFs if requested.
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if displayObject.RecordGIF
% second input is start frame, third input is end frame and last input
% 1s a character vector specifying the panel to record.
writeAnimatedGIF(displayObject, 10,170, 'trackMaintenance', 'ego');
writeAnimatedGIF(displayObject,310,330, 'jpda', 'processing');
writeAnimatedGIF(displayObject, 140,160, 'imm', 'details"');

Reference Image

Sl BN

The figure above shows the three displays at time = 18 seconds. The tracks are
represented by green bounding boxes. The bounding box detections are represented by
orange bounding boxes. The detections also have orange points inside them, representing
the point cloud segmented as obstacles. The segmented ground is shown in purple. The
cropped or discarded point cloud is shown in blue.
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Generate C Code

You can generate C code from the MATLAB® code for the tracking and the preprocessing
algorithm using MATLAB Coder™. C code generation enables you to accelerate MATLAB
code for simulation. To generate C code, the algorithm must be restructured as a
MATLAB function, which can be compiled into a MEX file or a shared library. For this
purpose, the point cloud processing algorithm and the tracking algorithm is restructured
into a MATLAB function, mexLidarTracker. Some variables are defined as persistent to
preserve their state between multiple calls to the function (see persistent). The inputs
and outputs of the function can be observed in the function description provided in the
"Supporting Files" section at the end of this example.

MATLAB Coder requires specifying the properties of all the input arguments. An easy way
to do this is by defining the input properties by example at the command line using the -
args option. For more information, see “Define Input Properties by Example at the
Command Line” (MATLAB Coder). Note that the top-level input arguments cannot be
objects of the handle class. Therefore, the function accepts the x, y and z locations of the
point cloud as an input. From the stored point cloud, this information can be extracted
using the Location property of the pointCloud object. This information is also directly
available as the raw data from the lidar sensor.

% Input lists
inputExample = {lidarData{l}.Location, 0};

% Generate code if file does not exist.
if ~exist('mexLidarTracker mex','file')

h = msgbox({'Generating code. This may take a few minutes...';'This message box wi’
codegen mexLidarTracker -args inputExample
close(h);
else
clear mexLidarTracker mex;

end
Rerun simulation with MEX Code

Rerun the simulation using the generated MEX code, mexLidarTracker mex.

% Start with same random seed
rng(2018);

% Reset time
time = 0;
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for i = l:numel(lidarData)
time = time + dT;

currentlLidar = lidarData{i};

[detectionsMex,obstacleIndicesMex,groundIndicesMex, croppedIndicesMex, ...
confirmedTracksMex, modelProbsMex] = mexLidarTracker mex(currentLidar.Location

% Record data for comparison with MATLAB execution.
numTracks(i,2) = numel(confirmedTracksMex);

end

Compare results between MATLAB and MEX Execution

disp(isequal(numTracks(:,1),numTracks(:,2)));

1

Notice that the number of confirmed tracks is the same for MATLAB and MEX code
execution. This assures that the lidar preprocessing and tracking algorithm returns the
same results with generated C code as with the MATLAB code.

Results

Now, analyze different events in the scenario and understand how the combination of
lidar measurement model, joint probabilistic data association, and interacting multiple
model filter, helps achieve a good estimation of the vehicle tracks.

Track Maintenance
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The animation above shows the simulation between time = 3 seconds and time = 16
seconds. Notice that tracks such as T9 and T6 maintain their IDs and trajectory during
the time span. However, track T10 is lost because the tracked vehicle was missed (not
detected) for a long time by the sensor. Also, notice that the tracked objects are able to
maintain their shape and kinematic center by positioning the detections onto the visible
portions of the vehicles. For example, as Track T7 moves forward, bounding box
detections start to fall on its visible rear portion and the track maintains the actual size of
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the vehicle. This illustrates the offset and shrinkage effect modeled in the measurement
functions.

Capturing Maneuvers

ct=010
Gfyr=-0_90

The animation shows that using an IMM filter helps the tracker to maintain tracks on
maneuvering vehicles. Notice that the vehicle tracked by T4 changes lanes behind the
ego vehicle. The tracker is able maintain a track on the vehicle during this maneuvering
event. Also notice in the display that its probability of following the constant turn model,
denoted by ct, increases during the lane change maneuver.

Joint Probabilistic Data Association
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This animation shows that using a joint probabilistic data association tracker helps in
maintaining tracks during ambiguous situations. Here, vehicles tracked by T44 and T97,
have a low probability of detection due to their large distance from the sensor. Notice that
the tracker is able to maintain tracks during events when one of the vehicles is not
detected. During the event, the tracks first coalesce, which is a known phenomenon in
JPDA, and then separate as soon as the vehicle was detected again.
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Summary

This example showed how to use a JPDA tracker with an IMM filter to track objects using
a lidar sensor. You learned how a raw point cloud can be preprocessed to generate
detections for conventional trackers, which assume one detection per object per sensor
scan. You also learned how to define a cuboid model to describe the kinematics,
dimensions, and measurements of extended objects being tracked by the JPDA tracker. In
addition, you generated C code from the algorithm and verified its execution results with
the MATLAB simulation.

Supporting Files
helperLidarModel

This function defines the lidar model to simulate shrinkage of the bounding box
measurement and center-point offset. This function is used in the helperCvmeasCuboid
and helperCtmeasCuboid functions to obtain bounding box measurement from the
state.

function meas = helperLidarModel(pos,dim,yaw)
This function returns the expected bounding box measurement given an
object's position, dimension, and yaw angle.

o o°

o°

Copyright 2019 The MathWorks, Inc.

% Get x,y and z

X = pos(1l,:);

y = pos(2,:);

z = pos(3,:) - 2; % lidar mounted at height = 2 meters.

% Get spherical measurement.
[az,~,r] = cart2sph(x,y,z);

% Shrink rate
s = 3/50; % 3 meters radial length at 50 meters.
sz = 2/50; % 2 meters height at 50 meters.

% Get length, width and height.
L = dim(1,:);
W = dim(2,:);
H = dim(3,:);

az = az - deg2rad(yaw);
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% Shrink length along radial direction.
Lshrink = min(L,abs(s*r.*(cos(az))));
Ls = L - Lshrink;

% Shrink width along radial direction.
Wshrink = min(W,abs(s*r.*(sin(az))));
Ws = W - Wshrink;

% Shrink height.
Hshrink = min(H,sz*r);
Hs = H - Hshrink;

% Measurement is given by a min-max detector hence length and width must be
% projected along x and vy.

Lmeas = Ls.*cosd(yaw) + Ws.*sind(yaw);

Wmeas = Ls.*sind(yaw) + Ws.*cosd(yaw);

% Similar shift is for x and y directions.

shiftX = Lshrink.*cosd(yaw) + Wshrink.*sind(yaw);
shiftY = Lshrink.*sind(yaw) + Wshrink.*cosd(yaw);
shiftZ = Hshrink;

o°

Modeling the affect of box origin offset
X - sign(x).*shiftX/2;

y - sign(y).*shiftY/2;

z + shiftz/2 + 2;

N < X
I mnnun

% Measurement format
meas = [X;y;z;Lmeas;Wmeas;Hs];

end

helperInverseLidarModel

This function defines the inverse lidar model to initiate a tracking filter using a lidar
bounding box measurement. This function is used in the helperInitIMMFilter
function to obtain state estimates from a bounding box measurement.

function [pos,posCov,dim,dimCov,yaw,yawCov] = helperInverselLidarModel(meas,measCov)
% This function returns the position, dimension, yaw using a bounding
% box measurement.
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% Copyright 2019 The MathWorks, Inc.

% Shrink rate.

S 3/50;

sz = 2/50;

% X,y and z of measurement
X = meas(l1,:);

y = meas(2,:);

z = meas(3,:);

[az,~,r] = cart2sph(x,y,z);

% Shift x and y position.
Lshrink = abs(s*r.*(cos(az)));
Wshrink = abs(s*r.*(sin(az)));

Hshrink sz*r;

shiftX = Lshrink;

shiftY = Wshrink;

shiftZ = Hshrink;

X X + sign(x).*shiftX/2;

y + sign(y).*shiftY/2;
z + sign(z).*shiftz/2;

y
z

pos = [x;y;z];
posCov = measCov(1l:3,1:3,:);

yaw = zeros(1l,numel(x), 'like',x);
yawCov = ones(1,1,numel(x),  'like',x);

Dimensions are initialized for a standard passenger car with low
uncertainity.

dim = [4.7;1.8;1.4];

dimCov = 0.01*eye(3);

end

)
©
)

©

HelperBoundingBoxDetector

This is the supporting class HelperBoundingBoxDetector to accept a point cloud input
and return a list of objectDetection
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classdef HelperBoundingBoxDetector < matlab.System
HelperBoundingBoxDetector A helper class to segment the point cloud
into bounding box detections.

The step call to the object does the following things:

1. Removes point cloud outside the limits.

2. From the survived point cloud, segments out ground

3. From the obstacle point cloud, forms clusters and puts bounding
box on each cluster.

0® 0% o° o° o° o° o° o°

o°

Cropping properties

properties
XLimits = [-70 701;
YLimits = [-6 6];
ZLimits = [-2 10];
end

% Ground Segmentation Properties
properties
GroundMaxDistance = 0.3;
GroundReferenceVector = [0 0 1];
GroundMaxAngularDistance = 5;
end

% Bounding box Segmentation properties

properties
SegmentationMinDistance
MinDetectionsPerCluster
MaxZDistanceCluster = 3;
MinZDistanceCluster = -3;

1.6;
2;

end

% Ego vehicle radius to remove ego vehicle point cloud.

properties
EgoVehicleRadius = 3;
end
properties
MeasurementNoise = blkdiag(eye(3),eye(3));
end
methods

function obj = HelperBoundingBoxDetector(varargin)
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setProperties(obj,nargin,varargin{:})
end
end

methods (Access = protected)

function [bboxDets,obstacleIndices,groundIndices,croppedIndices] = stepImpl(ob
% Crop point cloud
[pcSurvived, survivedIndices, croppedIndices]
% Remove ground plane
[pcObstacles,obstacleIndices,groundIndices]
% Form clusters and get bounding boxes
detBBoxes = getBoundingBoxes(pcObstacles,obj.SegmentationMinDistance,obj.M:
% Assemble detections
bboxDets = assembleDetections(detBBoxes,obj.MeasurementNoise,time);

cropPointCloud(currentPointC

removeGroundPlane(pcSurvived

end
end
end

function detections = assembleDetections(bboxes,measNoise,time)
% This method assembles the detections in objectDetection format.
numBoxes = size(bboxes,?2);
detections = cell(numBoxes,1);
for i = 1l:numBoxes
detections{i} = objectDetection(time,cast(bboxes(:,i), 'double'), ...
'MeasurementNoise',double(measNoise), 'ObjectAttributes',struct);
end
end

function bboxes = getBoundingBoxes(ptCloud,minDistance,minDetsPerCluster,maxZDistance,r
This method fits bounding boxes on each cluster with some basic
rules.
Cluster must have atleast minDetsPerCluster points.
Its mean z must be between maxZDistance and minZDistance.
length, width and height are calculated using min and max from each
dimension.
[labels,numClusters] = pcsegdist(ptCloud,minDistance);
pointData = ptCloud.Location;
bboxes = nan(6,numClusters, 'like',pointData);
isValidCluster = false(1l,numClusters);
for i = 1l:numClusters

thisPointData = pointData(labels == 1i,:);

meanPoint = mean(thisPointData,1);

if size(thisPointData,1) > minDetsPerCluster && ...

meanPoint(3) < maxZDistance && meanPoint(3) > minZDistance

0® 0% o° o° o° o°
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xMin
XMax
yMin
yMax
zMin
zMax

min(thisPointData(:,1));
max (thisPointData(:,1));
min(thisPointData(:,2));
max (thisPointData(:,2));
min(thisPointData(:,3));
max (thisPointData(:,3));

+
yMin + yMax
+

N< X o<

bboxes(:,i) = [x y z L w h]"';
isValidCluster(i) = 1 < 20; % max length of 20 meters
end
end
bboxes = bboxes(:,isValidCluster);
end

function [ptCloudOut,obstacleIndices,groundIndices] = removeGroundPlane(ptCloudIn,maxGi
% This method removes the ground plane from point cloud using
% pcfitplane.
[~,groundIndices,outliers] = pcfitplane(ptCloudIn,maxGroundDist, referenceVector,ma:
ptCloudOut = select(ptCloudIn,outliers);
obstacleIndices = currentIndices(outliers);
groundIndices = currentIndices(groundIndices);

end

function [ptCloudOut,indices,croppedIndices] = cropPointCloud(ptCloudIn,xLim,yLim,zLim
% This method selects the point cloud within limits and removes the
% ego vehicle point cloud using findNeighborsInRadius
locations = ptCloudIn.Location;

insideX = locations(:,1) < xLim(2) & locations(:,1) > xLim(1);
insideY = locations(:,2) < yLim(2) & locations(:,2) > yLim(1);
insideZ = locations(:,3) < zLim(2)

& locations(:,3) > zLim(1);
inside = insideX & insideY & insideZ;

% Remove ego vehicle

nearIndices = findNeighborsInRadius(ptCloudIn,[@ O 0],egoVehicleRadius);
nonEgoIndices = true(ptCloudIn.Count,1);

nonEgoIndices(nearIndices) = false;

validIndices = inside & nonEgoIndices;

indices = find(validIndices);

croppedIndices = find(~validIndices);
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ptCloudOut = select(ptCloudIn,indices);
end

mexLidarTracker

This function implements the point cloud preprocessing display and the tracking
algorithm using a functional interface for code generation.

function [detections,obstacleIndices,groundIndices,croppedIndices,...
confirmedTracks, modelProbs] = mexLidarTracker(ptCloudLocations,time)

persistent detectorModel tracker detectableTracksInput currentNumTracks

if isempty(detectorModel) || isempty(tracker) || isempty(detectableTracksInput) || iser

% A bounding box detector model.
detectorModel = HelperBoundingBoxDetector(...

'XLimits',[-50 75],... min-max
'YLimits',[-5 5],... min-max
'ZLimits',[-2 5],... min-max

minimum Euclidian distance
minimum points per cluster
measurement noise in detectic
maximum distance of ground p«

'SegmentationMinDistance',1.6, ...
'MinDetectionsPerCluster',1, ...
'MeasurementNoise',eye(6), ...
'GroundMaxDistance',0.3);

0® 0% o° o° o o° o°

assignmentGate = [10 100];
confThreshold = [7 10];
delThreshold = [8 10];

Kc = le-5;

Assignment threshold;

Confirmation threshold for history logic
Deletion threshold for history logic
False-alarm rate per unit volume

0° o° o° o°

filterInitFcn = @helperInitIMMFilter;

tracker = trackerJPDA('FilterInitializationFcn',filterInitFcn, ...
'TrackLogic', 'History', ...
"AssignmentThreshold',assignmentGate, ...
'ClutterDensity',Kc, ...
'ConfirmationThreshold',confThreshold,...
'DeletionThreshold',delThreshold,...
'HasDetectableTrackIDsInput', true,...
'InitializationThreshold',®, ...



Track Vehicles Using Lidar: From Point Cloud to Track List

'"MaxNumTracks',30);
detectableTracksInput = zeros(tracker.MaxNumTracks,2);

currentNumTracks = 0;
end

ptCloud = pointCloud(ptCloudLocations);

% Detector model
[detections,obstacleIndices,groundIndices, croppedIndices] = detectorModel(ptCloud, time

% Call tracker

[confirmedTracks,~,allTracks] = tracker(detections,time,detectableTracksInput(l:curren
% Update the detectability input

currentNumTracks = numel(allTracks);

detectableTracksInput(l:currentNumTracks,:) = helperCalcDetectability(allTracks,[1l 3 6

% Get model probabilities
modelProbs = zeros(2,numel(confirmedTracks));
if isLocked(tracker)
for k = 1l:numel(confirmedTracks)
cl = getTrackFilterProperties(tracker,confirmedTracks(k).TrackID, 'ModelProbabi
probs = c1{1};
modelProbs(1, k)
modelProbs(2, k)
end

probs(1);
probs(2);

end

end

helperCalcDetectability
The function calculate the probability of detection for each track. This function is used to
generate the "DetectableTracksIDs" input for the trackerJPDA.

function detectableTracksInput = helperCalcDetectability(tracks,posIndices)
% This is a helper function to calculate the detection probability of

% tracks for the lidar tracking example. It may be removed in a future

% release.

% Copyright 2019 The MathWorks, Inc.
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The bounding box detector has low probability of segmenting point clouds
into bounding boxes are distances greater than 40 meters. This function
models this effect using a state-dependent probability of detection for
each tracker. After a maximum range, the Pd is set to a high value to
enable deletion of track at a faster rate.

if isempty(tracks)

detectableTracksInput = zeros(0,2);

return;

d° o° o° o° o°

end

rMax = 75;

rAmbig =

stateSize = numel(tracks(1l).State);
posSelector = zeros(3,stateSize);

posSelector(l,posIndices(l)) = 1;
posSelector(2,posIndices(2)) = 1;
posSelector(3,posIndices(3)) = 1;

pos = getTrackPositions(tracks,posSelector);
if coder.target('MATLAB')

trackIDs = [tracks.TrackID];
else

trackIDs = zeros(1l,numel(tracks),'uint32');

for i = 1l:numel(tracks)

trackIDs(i) = tracks(i).TrackID;

end
end
[~,~,r] = cart2sph(pos(:,1),pos(:,2),pos(:,3));
probDetection = 0.9*ones(numel(tracks),1);
probDetection(r > rAmbig) = 0.4;
probDetection(r > rMax) = 0.99;
detectableTracksInput = [double(trackIDs(:)) probDetection(:)];
end

loadLidarAndImageData

Stitches Lidar and Camera data for processing using initial and final time specified.

function [lidarData,imageDatal = loadLidarAndImageData(initTime, finalTime)
initFrame = max(1l,floor(initTime*10));

lastFrame = min(350,ceil(finalTime*10));

load ('imageData 35seconds.mat', 'allImageData');

imageData = allImageData(initFrame:lastFrame);

numFrames
lidarData

lastFrame - initFrame + 1;
cell(numFrames,1);
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% Each file contains 70 frames.
initFileIndex floor(initFrame/70) + 1;
lastFileIndex ceil(lastFrame/70);

frameIndices = [1:70:numFrames numFrames + 1];

counter = 1;

for i = initFileIndex:lastFileIndex
startFrame = framelndices(counter);
endFrame = framelndices(counter + 1) - 1;
load(['lidarData ',num2str(i)], 'currentLidarData');
lidarData(startFrame:endFrame) = currentLidarData(l: (endFrame + 1 - startFrame));
counter = counter + 1;

end

end

References

[1] Arya Senna Abdul Rachman, Arya. "3D-LIDAR Multi Object Tracking for Autonomous
Driving: Multi-target Detection and Tracking under Urban Road Uncertainties." (2017).
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Object Detection Using YOLO v2 Deep Learning

1-30

This example shows how to train an object detector using a deep learning technique
named you only look once (YOLO) v2.

Overview

Deep learning is a powerful machine learning technique that automatically learns image
features required for detection tasks. There are several techniques for object detection
using deep learning such as Faster R-CNN and you only look once (YOLO) v2. This
example trains YOLO v2, which is an efficient deep learning object detector.

“Object Detection using Deep Learning”

Note: This example requires Computer Vision Toolbox™ and Deep Learning Toolbox™.
Parallel Computing Toolbox™ is recommended to train the detector using a CUDA-
capable NVIDIA™ GPU with compute capability 3.0.

Download Pretrained Detector

This example uses a pretrained detector to allow the example to run without having to
wait for training to complete. If you want to train the detector with the
trainYOLOv20bjectDetector function, set the doTraining variable to true.
Otherwise, download the pretrained detector.

doTraining = false;
if ~doTraining && ~exist('yolov2ResNet50VehicleExample.mat','file")
% Download pretrained detector.
disp('Downloading pretrained detector (98 MB)...');
pretrainedURL = 'https://www.mathworks.com/supportfiles/vision/data/yolov2ResNet50
websave('yolov2ResNet50VehicleExample.mat',pretrainedURL);
end

Downloading pretrained detector (98 MB)...

Load Dataset

This example uses a small vehicle data set that contains 295 images. Each image contains
one or two labeled instances of a vehicle. A small data set is useful for exploring the
YOLO v2 training procedure, but in practice, more labeled images are needed to train a
robust detector.

% Unzip vehicle dataset images.
unzip vehicleDatasetImages.zip
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% Load vehicle dataset ground truth.
data = load('vehicleDatasetGroundTruth.mat"');
vehicleDataset = data.vehicleDataset;

The training data is stored in a table. The first column contains the path to the image
files. The remaining columns contain the ROI labels for vehicles.

% Display first few rows of the data set.
vehicleDataset(1:4,:)

ans=4x2 table

imageFilename vehicle
‘vehicleImages/image 00001.jpg’ [1x4 double]
‘vehicleImages/image 00002.jpg’ [1x4 double]
‘vehicleImages/image 00003.jpg’ [1x4 double]
‘vehicleImages/image 00004.jpg’ [1x4 double]

Display one of the images from the data set to understand the type of images it contains.

% Add the fullpath to the local vehicle data folder.
vehicleDataset.imageFilename = fullfile(pwd,vehicleDataset.imageFilename);

% Read one of the images.
= imread(vehicleDataset.imageFilename{10});

—

Insert the ROI labels.
= insertShape(I, 'Rectangle',vehicleDataset.vehicle{10});

H o°

Resize and display image.
= imresize(I,3);
imshow(I)

H o°
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Split the data set into a training set for training the detector, and a test set for evaluating
the detector. Select 60% of the data for training. Use the rest for evaluation.

% Set random seed to ensure example training reproducibility.
rng(0);

% Randomly split data into a training and test set.
shuffledIndices = randperm(height(vehicleDataset));

idx = floor(0.6 * length(shuffledIndices) );
trainingData = vehicleDataset(shuffledIndices(1l:idx),:);
testData = vehicleDataset(shuffledIndices(idx+1l:end),:);

Create a YOLO v2 Object Detection Network

The YOLO v2 object detection network can be thought of as having two sub-networks. A
feature extraction network, followed by a detection network.

The feature extraction network is typically a pretrained CNN (see “Pretrained Deep
Neural Networks” (Deep Learning Toolbox) for more details). This example uses

1-32



Object Detection Using YOLO v2 Deep Learning

ResNet-50 for feature extraction. Other pretrained networks such as MobileNet v2 or
ResNet-18 can also be used depending on application requirements. The detection sub-
network is a small CNN compared to the feature extraction network and is composed of a
few convolutional layers and layers specific for YOLO v2.

Use the yolov2Layers function to automatically modify a pretrained ResNet-50 network
into a YOLO v2 object detection network. yolov2Layers requires you to specify several
inputs that parameterize a YOLO v2 network.

First, specify the image input size and the number of classes. The image input size should
be at least as big as the images in the training image set. In this example, the images are
224-by-224 RGB images.

% Define the image input size.
imageSize = [224 224 3];

% Define the number of object classes to detect.
numClasses = width(vehicleDataset)-1;

Next, specify the size of the anchor boxes. The anchor boxes should be selected based on
the scale and size of objects in the training data. You can “Estimate Anchor Boxes Using
Clustering” on page 1-39 to determine a good set of anchor boxes based on the training
data. Using this procedure, the anchor boxes for the vehicle dataset are:

anchorBoxes = [
43 59
18 22
23 29
84 109
1;

See “Anchor Boxes for Object Detection” on page 7-9 for additional details.

Finally, specify the network and feature extraction layer within that network to use as the
basis of YOLO v2.

% Load a pretrained ResNet-50.
baseNetwork = resnet50;

Select 'activation 40 relu' as the feature extraction layer. The layers after
'activation 40 relu' are discarded and the detection sub-network is attached to
'activation 40 relu'. This feature extraction layer outputs feature maps that are
downsampled by a factor of 16. This amount of downsampling is a good trade-off between
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spatial resolution and the strength of the extracted features (features extracted further
down the network encode stronger image features at the cost of spatial resolution).
Choosing the optimal feature extraction layer requires empirical analysis and is another
hyperparameter to tune.

% Specify the feature extraction layer.
featureLayer = 'activation 40 relu';

% Create the YOLO v2 object detection network.
lgraph = yolov2Layers(imageSize,numClasses,anchorBoxes, baseNetwork, featureLayer);

You can visualize the network using analyzeNetwork or deepNetworkDesigner from
Deep Learning Toolbox™.

Note that you can also create a custom YOLO v2 network layer-by-layer. “Design a YOLO
v2 Detection Network” on page 7-18

Train YOLO v2 Object Detector

To use the trainYOLOv20bjectDetector function, set doTraining to true. Otherwise,
load a pretrained detector.

if doTraining

Configure the training options.

* Lower the learning rate to le-3 to stabilize training.

* Set CheckpointPath to save detector checkpoints to a temporary
location. If training is interrupted due to a system failure or
power outage, you can resume training from the saved checkpoint.

options = trainingOptions('sgdm',
'MiniBatchSize', 16,
'InitiallLearnRate', le-3,
'MaxEpochs',10, ...
'CheckpointPath', tempdir,
'Shuffle', 'every-epoch');

o® o of o° o°

% Train YOLO v2 detector.

[detector,info] = trainYOLOv20bjectDetector(vehicleDataset,lgraph,options);
else

% Load pretrained detector for the example.

pretrained = load('yolov2ResNet50VehicleExample.mat');

detector = pretrained.detector;
end
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Note: This example verified on an NVIDA™ Titan X with 12 GB of GPU memory. If your
GPU has less memory, you may run out of memory. If this happens, lower the
'MiniBatchSize' using the trainingOptions function. Training this network took
approximately 5 minutes using this setup. Training time varies depending on the
hardware you use.

As a quick test, run the detector on one test image.

% Read a test image.
I = imread(testData.imageFilename{end});

% Run the detector.
[bboxes,scores] = detect(detector,I);

% Annotate detections in the image.
I = insertObjectAnnotation(I, 'rectangle',bboxes,scores);
imshow(I)
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Evaluate Detector Using Test Set

Evaluate the detector on a large set of images to measure the trained detector's
performance. Computer Vision Toolbox™ provides object detector evaluation functions to
measure common metrics such as average precision (evaluateDetectionPrecision)
and log-average miss rates (evaluateDetectionMissRate). Here, the average
precision metric is used. The average precision provides a single number that
incorporates the ability of the detector to make correct classifications (precision) and the
ability of the detector to find all relevant objects (recall).

The first step for detector evaluation is to collect the detection results by running the
detector on the test set.

% Create a table to hold the bounding boxes, scores, and labels output by

% the detector.

numImages = height(testData);

results = table('Size', [numImages 3], ...
'VariableTypes',{'cell', 'cell', 'cell'},...
'VariableNames', {'Boxes', 'Scores', 'Labels'});

% Run detector on each image in the test set and collect results.
for i = 1l:numImages

Read the image.
= imread(testData.imageFilename{i});

H o°

% Run the detector.
[bboxes,scores, labels] = detect(detector,I);

% Collect the results.

results.Boxes{i} = bboxes;
results.Scores{i} scores;
results.Labels{i} labels;

end

% Extract expected bounding box locations from test data.
expectedResults = testData(:, 2:end);

% Evaluate the object detector using average precision metric.
[ap, recall, precision] = evaluateDetectionPrecision(results, expectedResults);

The precision/recall (PR) curve highlights how precise a detector is at varying levels of
recall. Ideally, the precision would be 1 at all recall levels. The use of additional layers in
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the network can help improve the average precision, but might require additional training
data and longer training time.

% Plot precision/recall curve
plot(recall,precision)

xlabel('Recall')

ylabel('Precision')

grid on

title(sprintf('Average Precision = %.2f', ap))

Average Precision = 0.94
1 . . . .

0.991 ]

0.98 T

0.97 1 ]

Precision

0.96 1

0.951 T

0.94 ' ' ' '
Recall

Code Generation

Once the detector is trained and evaluated, you can generate code for the
yolov20bjectDetector using GPU Coder™. See “Code Generation for Object
Detection Using YOLO v2” (GPU Coder) example for more details.

Summary

This example showed how to train a vehicle detector using deep learning. You can follow
similar steps to train detectors for traffic signs, pedestrians, or other objects.

To learn more about deep learning, see “Object Detection using Deep Learning”.
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Estimate Anchor Boxes Using Clustering

This example shows how to estimate anchor boxes from object detector training data
using clustering [1].

Anchor boxes are important parameters of deep learning object detectors such as Faster
R-CNN and YOLO v2. The shape, scale, and number of anchor boxes impact the efficiency
and accuracy of the detectors. This example shows how to estimate anchor boxes from a
vehicle detector training dataset using the K-Medoids clustering algorithm.

See “Anchor Boxes for Object Detection” on page 7-9 to learn more about anchor
boxes.

Load Training Data

Load the vehicle dataset, which contains 295 images and associated box labels.
% Load vehicle training data.

data = load('vehicleTrainingData.mat');

vehicleDataset = data.vehicleTrainingData;

% Add fullpath to the local vehicle data folder.

dataDir = fullfile(toolboxdir('vision'), 'visiondata');

vehicleDataset.imageFilename = fullfile(dataDir, vehicleDataset.imageFilename);

% Display dataset summary
summary (vehicleDataset)

Variables:
imageFilename: 295x1 cell array of character vectors
vehicle: 295x1 cell

Visualize Ground Truth Box Distribution

Visualize the labeled boxes to better understand the range of object sizes present in the
dataset.

% Combine all the ground truth boxes into one array.
allBoxes = vertcat(vehicleDataset.vehicle{:});

Plot the box area versus the box aspect ratio.
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% Plot the box area versus box aspect ratio.
aspectRatio = allBoxes(:,3) ./ allBoxes(:,4);
area = prod(allBoxes(:,3:4),2);

figure

scatter(area,aspectRatio)

xlabel("Box Area")

ylabel("Aspect Ratio (width/height)");
title("Box area vs. Aspect ratio")
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Visually, you see a few groups of objects that are of similar size and shape, but the groups
are spread out. This makes it difficult to manually choose anchor boxes. A better way to
estimate anchor boxes is to use a clustering algorithm that can group similar boxes
together using a meaningful metric.

Cluster Ground Truth Boxes

Cluster the boxes using the kmedoids function with custom intersection-over-union (IoU)
distance metric. Other clustering functions such as clusterdata or dbscan may also be
used.

A distance metric based on IoU is invariant to the size of boxes, unlike the Euclidean
distance metric, which produces larger errors as the box sizes increase [1]. In addition,
an IoU distance metric leads to boxes of similar aspect ratio and sizes being clustered
together, which results in anchor box estimates that fit the data. The IoU distance metric
is implemented in the supporting function, iouDistanceMetric.

Select the number of anchors and estimate the anchor boxes using kmedoids. The
cluster centers returned by kmedoids are the anchor box estimates.

% Select the number of anchor boxes.
numAnchors = 4;

% Cluster using K-Medoids.
[clusterAssignments, anchorBoxes, sumd] = kmedoids(allBoxes(:,3:4),numAnchors, 'Distance

% Display estimated anchor boxes. The box format is the [width height].
anchorBoxes

anchorBoxes = 4x2

59 43
22 18
29 23
109 84

% Display clustering results.

figure

gscatter(area,aspectRatio, clusterAssignments);
title("K-Mediods with "+numAnchors+" clusters")
xlabel("Box Area")

ylabel("Aspect Ratio (width/height)");

grid
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K-Mediods with 4 clusters
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Choosing the number of anchors is another training hyperparameter that requires careful
selection using empirical analysis. One quality measure for judging the estimated anchor
boxes is the mean IoU of the boxes in each cluster. Calculate this using the cluster
assignments produced by kmedoids.

% Count number of boxes per cluster. Exclude the cluster center while
% counting.
counts = accumarray(clusterAssignments, ones(length(clusterAssignments),1),[],@(x)sum(:

% Compute mean IoU.
meanIoU = mean(l - sumd./(counts))
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meanIoU = 0.8244

The mean IoU should be greater than 0.5 to ensure anchor boxes overlap well with the
boxes in the training data. Increasing the number of anchors may improve the mean IoU
measure. However, using more anchor boxes in an object detector may increase the
computation cost and lead to overfitting, which results in poor detector performance.

Sweep over a range of values and plot the mean IoU versus number of anchor boxes to
measure the trade-off between number of anchors an mean IoU.

maxNumAnchors = 15;
for k = 1l:maxNumAnchors

% Estimate anchors using clustering.
[clusterAssignments, anchorBoxes, sumd] = kmedoids(allBoxes(:,3:4),k, 'Distance’', @i

% Compute mean IoU.
counts = accumarray(clusterAssignments, ones(length(clusterAssignments),1l),[],@(x):
meanIoU(k) = mean(l - sumd./(counts));

end

figure

plot(1l:maxNumAnchors, meanIoU,'-0')
ylabel("Mean IoU")

xLlabel("Number of Anchors")
title("Number of Anchors vs. Mean IoU")
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Number of Anchors vs. Mean loU
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Two anchor boxes provide a mean IoU above 0.7 and there is marginal improvement in
mean IoU beyond 6 anchor boxes. Given these results, the next step is to train and
evaluate multiple object detectors using values between 2 and 6. This empirical analysis
helps determine the number of anchor boxes required to satisfy application performance

requirements such as detection speed or accuracy.
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Supporting Functions

function dist = iouDistanceMetric(boxWidthHeight,allBoxWidthHeight)
Return the IoU distance metric. The bboxOverlapRatio function

is used to produce the IoU scores. The output distance is equal
to 1 - IoU.

o° o° o°

Add x and y coordinates to box widths and heights so that
bboxOverlapRatio can be used to compute IoU.
boxWidthHeight = prefixXYCoordinates(boxWidthHeight);
allBoxWidthHeight = prefixXYCoordinates(allBoxWidthHeight);

o® o°

% Compute IoU distance metric.
dist = 1 - bboxOverlapRatio(allBoxWidthHeight, boxWidthHeight);
end

function boxWidthHeight = prefixXYCoordinates(boxWidthHeight)
% Add x and y coordinates to boxes.

n = size(boxWidthHeight,1);

boxWidthHeight = [ones(n,2) boxWidthHeight];

end
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Create YOLO v2 Object Detection Network

1-46

This example shows how to modify a pretrained MobileNet v2 network to create a YOLO
v2 object detection network. This approach offers additional flexibility compared to the
yolov2Layers function, which is returns a canonical YOLO v2 object detector.

The procedure to convert a pretrained network into an YOLO v2 network is similar to the
transfer learning procedure for image classification:

Load the pretrained network.

Select a layer from the pretrained network to use for feature extraction.

Remove all the layers after the feature extraction layer.

A W N R

Add new layers to support the object detection task.
You can also implement this procedure using the deepNetworkDesigner app.

Load Pretrained Network

Load a pretrained MobileNet v2 network using mobilenetv2. This requires the Deep
Learning Toolbox Model for MobileNet v2 Network™.

% Load a pretrained network.
net = mobilenetv2();

% Convert network into a layer graph object
% in order to manipulate the layers.
lgraph = layerGraph(net);

Update Network Image Size

Change the image size of the network based on the training data requirements. To
illustrate this step, assume the required image size is [300 300 3] for RGB images.

% Input size for detector.
imagelInputSize = [300 300 3];

Create new image input layer. Set the new layer name
to the original layer name.
imgLayer = imagelInputlLayer(imageInputSize, "Name","input 1")

[)
©
)

©

imgLayer =
ImageInputLayer with properties:
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Name: 'input 1'
InputSize: [300 300 3]

Hyperparameters

DataAugmentation: 'none'’
Normalization: 'zerocenter'
AverageImage: []

% Replace old image input layer.
lgraph = replacelLayer(lgraph,"input 1",imgLayer);

Select Feature Extraction Layer

A good feature extraction layer for YOLO v2 is one where the output feature width and
height is between 8 and 16 times smaller than the input image. This level of
downsampling is a trade-off between spatial resolution and quality of output features. The
analyzeNetwork app or deepNetworkDesigner app can be used to determine the
output sizes of layers within a network. Note that selecting an optimal feature extraction
layer requires empirical evaluation.

Set the feature extraction layer to “block 12 add” from MobileNet v2. Because the
required input size was previously set to [300 300], the output feature size is [19 19]. This
results in a downsampling factor of about 16.

featureExtractionLayer = "block 12 add";

Remove Layers After Feature Extraction Layer

To easily remove layers from a deep network, such as MobileNet v2, use the
deepNetworkDesigner app. Import the network into the app to manually remove the
layers after "block 12 add". Export the modified network to your workspace. This
example uses a pre-saved version of MobileNet v2 which was exported from the app.

% Load a network modified using Deep Network Designer.
modified = load("mobilenetv2Blockl2Add.mat");
lgraph = modified.mobilenetv2Block12Add;

Alternatively, if you have a list of layers to remove, you can use the removelLayers
function to remove them manually.
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Create YOLO v2 Detection Sub-Network

The detection subnetwork consists of groups of serially connected convolution, ReLU, and
batch normalization layers. These layers are followed by a yolov2TransformLayer and a
yolov20utputLayer.

Create the convolution, ReLU, and batch normalization portion of the detection sub-
network.

% Set the convolution layer filter size to [3 3].
% This size is common in CNN architectures.
filterSize = [3 31;

Set the number of filters in the convolution layers
to match the number of channels in the

feature extraction layer output.

numFilters = 96;

o° o° o°

Create the detection subnetwork.

* The convolution layer uses "same" padding
to preserve the input size.

detectionLayers = [

o° o° o°

% group 1
convolution2dLayer(filterSize,numFilters, "Name", "yolov2Convl", ...
"Padding", "same", "WeightsInitializer",@(sz)randn(sz)*0.01)

batchNormalizationLayer("Name", "yolov2Batchl");
reluLayer("Name", "yolov2Relul");

% group 2
convolution2dLayer(filterSize,numFilters, "Name", "yolov2Conv2", ...
"Padding", "same", "WeightsInitializer",@(sz)randn(sz)*0.01)

batchNormalizationLayer("Name", "yolov2Batch2");
reluLayer("Name", "yolov2Relu2");
1

detectionLayers =
6x1 Layer array with layers:

1 "yolov2Convl' Convolution 96 3x3 convolutions with stride [1
2 'yolov2Batchl' Batch Normalization Batch normalization

3 "yolov2Relul' RelLU RelLU

4 "yolov2Conv2' Convolution 96 3x3 convolutions with stride [1
5 'yolov2Batch2' Batch Normalization Batch normalization

6 "yolov2Relu2' RelLU RelLU
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The remaining layers are configured based on application specific details such as number
of object classes and anchor boxes.

% Define the number of classes to detect.
numClasses = 5;

% Define the anchor boxes.
anchorBoxes = [

16 16

32 16

1;

% Number of anchor boxes.
numAnchors = size(anchorBoxes,1);

There are five predictions per anchor box:
* Predict the x, y, width, and height offset
for each anchor.
* Predict the intersection-over-union with ground
truth boxes.
numPredictionsPerAnchor = 5;

0° o° o° o o°

% Number of filters in last convolution layer.
outputSize = numAnchors*(numClasses+numPredictionsPerAnchor);

Create the convolution2dLayer, yolov2Transform, and yolov20utput layers.

% Final layers in detection sub-network.

finalLayers = [
convolution2dLayer(1l,outputSize, "Name", "yolov2ClassConv", ...
"WeightsInitializer", @(sz)randn(sz)*0.01)
yolov2TransformLayer(numAnchors, "Name", "yolov2Transform")
yolov20utputLayer(anchorBoxes, "Name", "yolov20utputLayer")
1;

Add the last layers to the network.

% Add the last layers to network.
detectionLayers = [
detectionLayers
finallLayers

]

detectionLayers =
9x1 Layer array with layers:
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1 "yolov2Convl' Convolution 96 3x3 convolutions with stric
2 'yolov2Batchl' Batch Normalization Batch normalization

3 "yolov2Relul' RelLU RelLU

4 "yolov2Conv2' Convolution 96 3x3 convolutions with stric
5 "yolov2Batch2' Batch Normalization Batch normalization

6 "yolov2Relu2' RelLU RelLU

7 'yolov2ClassConv' Convolution 20 1x1 convolutions with strit
8 'yolov2Transform' YOLO v2 Transform Layer  YOLO v2 Transform Layer with :
9 'yolov20utputLayer!' YOLO v2 OQutput YOLO v2 OQutput with 2 anchors

Complete YOLO v2 Detection Network

Attach the detection subnetwork to the feature extraction network.

% Add the detection subnetwork to the feature extraction network.
lgraph = addLayers(lgraph,detectionLayers);

% Connect the detection subnetwork to the feature extraction layer.
lgraph = connectlLayers(lgraph, featureExtractionLayer, "yolov2Convl");

Use analyzeNetwork(lgraph) to check the network and then train a YOLO v2 object
detector using the trainYOLOv20bjectDetector function.
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Estimate Anchor Boxes Using Clustering

This example shows how to estimate anchor boxes from object detector training data
using clustering [1].

Anchor boxes are important parameters of deep learning object detectors such as Faster
R-CNN and YOLO v2. The shape, scale, and number of anchor boxes impact the efficiency
and accuracy of the detectors. This example shows how to estimate anchor boxes from a
vehicle detector training dataset using the K-Medoids clustering algorithm.

See “Anchor Boxes for Object Detection” on page 7-9 to learn more about anchor
boxes.

Load Training Data

Load the vehicle dataset, which contains 295 images and associated box labels.
% Load vehicle training data.

data = load('vehicleTrainingData.mat');

vehicleDataset = data.vehicleTrainingData;

% Add fullpath to the local vehicle data folder.

dataDir = fullfile(toolboxdir('vision'), 'visiondata');

vehicleDataset.imageFilename = fullfile(dataDir, vehicleDataset.imageFilename);

% Display dataset summary
summary (vehicleDataset)

Variables:
imageFilename: 295x1 cell array of character vectors
vehicle: 295x1 cell

Visualize Ground Truth Box Distribution

Visualize the labeled boxes to better understand the range of object sizes present in the
dataset.

% Combine all the ground truth boxes into one array.
allBoxes = vertcat(vehicleDataset.vehicle{:});

Plot the box area versus the box aspect ratio.
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% Plot the box area versus box aspect ratio.
aspectRatio = allBoxes(:,3) ./ allBoxes(:,4);
area = prod(allBoxes(:,3:4),2);

figure

scatter(area,aspectRatio)

xlabel("Box Area")

ylabel("Aspect Ratio (width/height)");
title("Box area vs. Aspect ratio")

Box area vs. Aspect ratio
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Visually, you see a few groups of objects that are of similar size and shape, but the groups
are spread out. This makes it difficult to manually choose anchor boxes. A better way to
estimate anchor boxes is to use a clustering algorithm that can group similar boxes
together using a meaningful metric.

Cluster Ground Truth Boxes

Cluster the boxes using the kmedoids function with custom intersection-over-union (IoU)
distance metric. Other clustering functions such as clusterdata or dbscan may also be
used.

A distance metric based on IoU is invariant to the size of boxes, unlike the Euclidean
distance metric, which produces larger errors as the box sizes increase [1]. In addition,
an IoU distance metric leads to boxes of similar aspect ratio and sizes being clustered
together, which results in anchor box estimates that fit the data. The IoU distance metric
is implemented in the supporting function, iouDistanceMetric.

Select the number of anchors and estimate the anchor boxes using kmedoids. The
cluster centers returned by kmedoids are the anchor box estimates.

% Select the number of anchor boxes.
numAnchors = 4;

% Cluster using K-Medoids.
[clusterAssignments, anchorBoxes, sumd] = kmedoids(allBoxes(:,3:4),numAnchors, 'Distance

% Display estimated anchor boxes. The box format is the [width height].
anchorBoxes

anchorBoxes = 4x2

59 43
22 18
29 23
109 84

% Display clustering results.

figure

gscatter(area,aspectRatio, clusterAssignments);
title("K-Mediods with "+numAnchors+" clusters")
xlabel("Box Area")

ylabel("Aspect Ratio (width/height)");

grid
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Aspect Ratio (width/height)
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Choosing the number of anchors is another training hyperparameter that requires careful
selection using empirical analysis. One quality measure for judging the estimated anchor
boxes is the mean IoU of the boxes in each cluster. Calculate this using the cluster
assignments produced by kmedoids.

% Count number of boxes per cluster. Exclude the cluster center while
% counting.
counts = accumarray(clusterAssignments, ones(length(clusterAssignments),1),[],@(x)sum(:

% Compute mean IoU.
meanIoU = mean(l - sumd./(counts))
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meanIoU = 0.8244

The mean IoU should be greater than 0.5 to ensure anchor boxes overlap well with the
boxes in the training data. Increasing the number of anchors may improve the mean IoU
measure. However, using more anchor boxes in an object detector may increase the
computation cost and lead to overfitting, which results in poor detector performance.

Sweep over a range of values and plot the mean IoU versus number of anchor boxes to
measure the trade-off between number of anchors an mean IoU.

maxNumAnchors = 15;
for k = 1l:maxNumAnchors

% Estimate anchors using clustering.
[clusterAssignments, anchorBoxes, sumd] = kmedoids(allBoxes(:,3:4),k, 'Distance’', @i

% Compute mean IoU.
counts = accumarray(clusterAssignments, ones(length(clusterAssignments),1l),[],@(x):
meanIoU(k) = mean(l - sumd./(counts));

end

figure

plot(1l:maxNumAnchors, meanIoU,'-0')
ylabel("Mean IoU")

xLlabel("Number of Anchors")
title("Number of Anchors vs. Mean IoU")
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Number of Anchors vs. Mean loU
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Two anchor boxes provide a mean IoU above 0.7 and there is marginal improvement in
mean IoU beyond 6 anchor boxes. Given these results, the next step is to train and
evaluate multiple object detectors using values between 2 and 6. This empirical analysis
helps determine the number of anchor boxes required to satisfy application performance

requirements such as detection speed or accuracy.
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Supporting Functions

function dist = iouDistanceMetric(boxWidthHeight,allBoxWidthHeight)
Return the IoU distance metric. The bboxOverlapRatio function

is used to produce the IoU scores. The output distance is equal
to 1 - IoU.

o° o° o°

Add x and y coordinates to box widths and heights so that
bboxOverlapRatio can be used to compute IoU.
boxWidthHeight = prefixXYCoordinates(boxWidthHeight);
allBoxWidthHeight = prefixXYCoordinates(allBoxWidthHeight);

o® o°

% Compute IoU distance metric.
dist = 1 - bboxOverlapRatio(allBoxWidthHeight, boxWidthHeight);
end

function boxWidthHeight = prefixXYCoordinates(boxWidthHeight)
% Add x and y coordinates to boxes.

n = size(boxWidthHeight,1);

boxWidthHeight = [ones(n,2) boxWidthHeight];

end
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Semantic Segmentation Using Dilated Convolutions
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This example shows how to train a semantic segmentation network using dilated
convolutions.

A semantic segmentation network classifies every pixel in an image, resulting in an image
that is segmented by class. Applications for semantic segmentation include road
segmentation for autonomous driving and cancer cell segmentation for medical diagnosis.
To learn more, see “Semantic Segmentation Basics” on page 7-30.

Semantic segmentation networks like DeepLab [1] make extensive use of dilated
convolutions (also known as atrous convolutions) because they can increase the receptive
field of the layer (the area of the input which the layers can see) without increasing the
number of parameters or computations.

Load Training Data

The example uses a simple dataset of 32x32 triangle images for illustration purposes. The
dataset includes accompanying pixel label ground truth data. Load the training data using
an imageDatastore and a pixelLabelDatastore.

dataFolder = fullfile(toolboxdir('vision'),'visiondata', 'triangleImages');
imageFolderTrain = fullfile(dataFolder, 'trainingImages');
labelFolderTrain = fullfile(dataFolder, 'traininglLabels');

Create an image datastore for the images.

imdsTrain = imageDatastore(imageFolderTrain);

Create a pixelLabelDatastore for the ground truth pixel labels.

classNames = ["triangle" "background"];
labels = [255 0];
pxdsTrain = pixellLabelDatastore(labelFolderTrain,classNames, labels)

pxdsTrain =
PixelLabelDatastore with properties:

Files: {200x1 cell}
ClassNames: {2x1 cell}
ReadSize: 1
ReadFcn: @readDatastorelImage
AlternateFileSystemRoots: {}
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Create Semantic Segmentation Network

This example uses a simple semantic segmentation network based on dilated
convolutions.

Create a data source for training data and get the pixel counts for each label.

pximdsTrain = pixellLabelImageDatastore(imdsTrain,pxdsTrain);
tbl = countEachLabel(pximdsTrain)

tb1=2x3 table

Name PixelCount ImagePixelCount
"triangle’ 10326 2.048e+05
"background’ 1.9447e+05 2.048e+05

The majority of pixel labels are for background. This class imbalance biases the learning
process in favor of the dominant class. To fix this, use class weighting to balance the
classes. There are several methods for computing class weights. One common method is
inverse frequency weighting where the class weights are the inverse of the class
frequencies. This increases weight given to under-represented classes. Calculate the class
weights using inverse frequency weighting.

numberPixels = sum(tbl.PixelCount);
frequency = tbl.PixelCount / numberPixels;
classWeights = 1 ./ frequency;

Create a network for pixel classificaiton with an image input layer with input size
corresponding to the size of the input images. Next, specify three blocks of convolution,
batch normalization, and ReLU layers. For each convolutional layer, specify 32 3-by-3
filters with increasing dilation factors and specify to pad the inputs to be the same size as
the outputs by setting the 'Padding' option to 'same'. To classify the pixels, include a
convolutional layer with K 1-by-1 convolutions, where K is the number of classes, followed
by a softmax layer and a pixelClassificationlLayer with the inverse class weights.

inputSize = [32 32 1];

filterSize = 3;

numFilters = 32;

numClasses = numel(classNames);
layers = [

imagelInputLayer(inputSize)
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convolution2dLayer(filterSize,numFilters, 'DilationFactor',1, 'Padding’', 'same")
batchNormalizationLayer
reluLayer

convolution2dLayer(filterSize,numFilters, 'DilationFactor',2, 'Padding’', 'same")
batchNormalizationLayer
reluLayer

convolution2dLayer(filterSize,numFilters, 'DilationFactor',4, 'Padding’', 'same")
batchNormalizationLayer
reluLayer

convolution2dLayer(1l,numClasses)
softmaxLayer
pixelClassificationLayer('Classes',classNames, 'ClassWeights', classWeights)];

Train Network

Specify the training options. Using the SGDM solver, train for 100 epochs, mini-batch size
64, and learn rate 0.001.

options = trainingOptions('sgdm',
'MaxEpochs', 100,
'MiniBatchSize', 64, .
'InitiallLearnRate', le-3);

Train the network using trainNetwork.
net = trainNetwork(pximdsTrain,layers,options);

Training on single GPU.
Initializing image normalization.

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning
| | | (hh:mm:ss) | Accuracy | Loss | Rate

I

| 1 | 1 | 00:00:00 | 67.54% | 0.7098 | 0.00!
| 17 | 50 | 00:00:03 | 84.60% | 0.3851 | 0.00!
| 34 | 100 | 00:00:06 | 89.85% | 0.2536 | 0.00!
| 50 | 150 | 00:00:09 | 93.39% | 0.1959 | 0.00!
| 67 | 200 | 00:00:11 | 95.89% | 0.1559 | 0.00!
| 84 | 250 | 00:00:14 | 97.29% | 0.1188 | 0.00!
| 100 | 300 | 00:00:18 | 98.28% | 0.0970 | 0.00!
I
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Test Network

Load the test data. Create an image datastore for the images. Create a
pixelLabelDatastore for the ground truth pixel labels.

imageFolderTest = fullfile(dataFolder, 'testImages');

imdsTest = imageDatastore(imageFolderTest);

labelFolderTest = fullfile(dataFolder, 'testLabels');

pxdsTest = pixellLabelDatastore(labelFolderTest,classNames, labels);

Make predictions using the test data and trained network.
pxdsPred = semanticseg(imdsTest,net, 'WritelLocation',tempdir);

Running semantic segmentation network
* Processing 100 images.
* Progress: 100.00%

Evaluate the prediction accuracy using evaluateSemanticSegmentation.
metrics = evaluateSemanticSegmentation(pxdsPred,pxdsTest);

Evaluating semantic segmentation results

* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU, BF score.
* Processing 100 images...

[ ] 100%

Elapsed time: 00:00:00

Estimated time remaining: 00:00:00

* Finalizing... Done.

* Data set metrics:

GlobalAccuracy MeanAccuracy MeanIoU WeightedIoU MeanBFScore

0.98334 0.99107 0.85869 0.97109 0.68197

For more information on evaluating semantic segmentation networks, see
evaluateSemanticSegmentation.

Segment New Image

Read and display the test image triangleTest. jpg.
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imgTest = imread('triangleTest.jpg');
figure
imshow(imgTest)
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Segment the test image using semanticseg and display the results using
labeloverlay.

C = semanticseg(imgTest,net);
B labeloverlay(imgTest,C);
figure

imshow(B)
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Define Custom Pixel Classification Layer with Dice Loss

1-64

This example shows how to define and create a custom pixel classification layer that uses
Dice loss.

This layer can be used to train semantic segmentation networks. To learn more about
creating custom deep learning layers, see “Define Custom Deep Learning Layers” (Deep
Learning Toolbox).

Dice Loss

The Dice loss is based on the Sgrensen-Dice similarity coefficient for measuring overlap
between two segmented images. The generalized Dice loss [1,2], L, for between one
image Y and the corresponding ground truth T is given by

K M
23K = 1WkSm = 1 YkmTkm

L=1-
4 M 2 7
2k =1Wk2m = 1Ykm + Tkm

where K is the number of classes, M is the number of elements along the first two
dimensions of Y, andwy is a class specific weighting factor that controls the contribution

each class makes to the loss. wy is typically the inverse area of the expected region:

1

Wk = —
M 2

(Em = lTkm)

This weighting helps counter the influence of larger regions on the Dice score making it

easier for the network to learn how to segment smaller regions.

Classification Layer Template

Copy the classification layer template into a new file in MATLAB®. This template outlines
the structure of a classification layer and includes the functions that define the layer
behavior. The rest of the example shows how to complete the
dicePixelClassificationLayer.

classdef dicePixelClassificationLayer < nnet.layer.ClassificationLayer
properties

% Optional properties
end
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methods

function loss = forwardLoss(layer, Y, T)
% Layer forward loss function goes here.
end

function dLdY = backwardLoss(layer, Y, T)
% Layer backward loss function goes here.
end
end

end

Declare Layer Properties

By default, custom output layers have the following properties:

Name - Layer name, specified as a character vector or a string scalar. To include this
layer in a layer graph, you must specify a nonempty unique layer name. If you train a
series network with this layer and Name is set to ' ', then the software automatically
assigns a name at training time.

Description - One-line description of the layer, specified as a character vector or a
string scalar. This description appears when the layer is displayed in a Layer array. If
you do not specify a layer description, then the software displays the layer class name.

Type - Type of the layer, specified as a character vector or a string scalar. The value of
Type appears when the layer is displayed in a Layer array. If you do not specify a
layer type, then the software displays 'Classification layer' or 'Regression
layer'.

Custom classification layers also have the following property:

Classes - Classes of the output layer, specified as a categorical vector, string array,
cell array of character vectors, or 'auto'. If Classes is 'auto’', then the software
automatically sets the classes at training time. If you specify a string array or cell
array of character vectors str, then the software sets the classes of the output layer
to categorical(str,str). The default value is 'auto’.

If the layer has no other properties, then you can omit the properties section.

The Dice loss requires a small constant value to prevent division by zero. Specify the
property, Epsilon, to hold this value.
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classdef dicePixelClassificationLayer < nnet.layer.ClassificationlLayer

properties(Constant)
% Small constant to prevent division by zero.
Epsilon = le-8;

end

end

Create Constructor Function

Create the function that constructs the layer and initializes the layer properties. Specify
any variables required to create the layer as inputs to the constructor function.

Specify an optional input argument name to assign to the Name property at creation.

function layer = dicePixelClassificationLayer(name)
% layer = dicePixelClassificationLayer(name) creates a Dice
% pixel classification layer with the specified name.

% Set layer name.
layer.Name = name;

% Set layer description.
layer.Description = 'Dice loss';
end

Create Forward Loss Function

Create a function named forwardLoss that returns the weighted cross entropy loss
between the predictions made by the network and the training targets. The syntax for
forwardLoss is loss = forwardLoss(layer, Y, T), where Y is the output of the
previous layer and T represents the training targets.

For semantic segmentation problems, the dimensions of T match the dimension of Y,
where Y is a 4-D array of size H-by-W-by-K-by-N, where K is the number of classes, and N is
the mini-batch size.

The size of Y depends on the output of the previous layer. To ensure that Y is the same
size as T, you must include a layer that outputs the correct size before the output layer.
For example, to ensure that Y is a 4-D array of prediction scores for K classes, you can
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include a fully connected layer of size K or a convolutional layer with K filters followed by
a softmax layer before the output layer.

function loss = forwardLoss(layer, Y, T)
% loss = forwardLoss(layer, Y, T) returns the Dice loss between
% the predictions Y and the training targets T.

% Weights by inverse of region size.

W=1./ sum(sum(T,1),2).72;

intersection = sum(sum(Y.*T,1),2);

union = sum(sum(Y.”2 + T.72, 1),2);
numer = 2*sum(W.*intersection,3) + layer.Epsilon;
denom = sum(W.*union,3) + layer.Epsilon;

% Compute Dice score.
dice = numer./denom;

% Return average Dice loss.
N = size(Y,4);

loss = sum((1l-dice))/N;
end

Create Backward Loss Function

Create the backward loss function that returns the derivatives of the Dice loss with
respect to the predictions Y. The syntax for backwardLoss is loss =
backwardLoss(layer, Y, T), whereY is the output of the previous layer and T
represents the training targets.

The dimensions of Y and T are the same as the inputs in forwardLoss.
function dLdY = backwardLoss(layer, Y, T)
% dLdY = backwardLoss(layer, Y, T) returns the derivatives of
% the Dice loss with respect to the predictions Y.

% Weights by inverse of region size.
W=1./ sum(sum(T,1),2).72;

intersection = sum(sum(Y.*T,1),2);
union = sum(sum(Y.”2 + T.”2, 1),2);
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end

numer
denom

2*sum(W.*intersection,3) + layer.Epsilon;
sum(W.*union,3) + layer.Epsilon;

N = size(Y,4);

dLdY = (2*W.*Y.*numer./denom.”2 - 2*W.*T./denom)./N;

Completed Layer

The completed layer is provided in dicePixelClassificationLayer.m.

classdef dicePixelClassificationLayer < nnet.layer.ClassificationLayer
% This layer implements the generalized dice loss function for training
% semantic segmentation networks.

properties(Constant)
% Small constant to prevent division by zero.
Epsilon = le-8;

end

methods

function layer = dicePixelClassificationLayer(name)

end

% layer = dicePixelClassificationLayer(name) creates a Dice
% pixel classification layer with the specified name.

% Set layer name.
layer.Name = name;

% Set layer description.
layer.Description = 'Dice loss';

function loss = forwardLoss(layer, Y, T)

)

% loss = forwardLoss(layer, Y, T) returns the Dice loss between
% the predictions Y and the training targets T.

% Weights by inverse of region size.
W=1./ sum(sum(T,1),2).72;

intersection = sum(sum(Y.*T,1),2);
union = sum(sum(Y.”2 + T.”2, 1),2);
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end

numer
denom

2*sum(W.*intersection,3) + layer.Epsilon;
sum(W.*union,3) + layer.Epsilon;

% Compute Dice score.
dice = numer./denom;

Return average Dice loss.
= size(Y,4);

N
loss = sum((1l-dice))/N;

function dLdY = backwardLoss(layer, Y, T)

end
end
end

% dLdY = backwardLoss(layer, Y, T) returns the derivatives of
% the Dice loss with respect to the predictions Y.

% Weights by inverse of region size.
W=1./ sum(sum(T,1),2).72;

intersection = sum(sum(Y.*T,1),2);
union = sum(sum(Y.”2 + T.”2, 1),2);

numer
denom

2*sum(W.*intersection,3) + layer.Epsilon;
sum(W.*union,3) + layer.Epsilon;

N = size(Y,4);

dLdY = (2*W.*Y.*numer./denom.”2 - 2*W.*T./denom)./N;

GPU Compatibility

For GPU compatibility, the layer functions must support inputs and return outputs of type
gpuArray. Any other functions used by the layer must do the same.

The MATLAB functions used in forwardLoss, and backwardLoss in
dicePixelClassificationLayer all support gpuArray inputs, so the layer is GPU

compatible.

Check Output Layer Validity

Create an instance of the layer.
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layer = dicePixelClassificationlLayer('dice');

Check the layer validity of the layer using checkLayer. Specify the valid input size to be
the size of a single observation of typical input to the layer. The layer expects a H-by-W-by-
K-by-N array inputs, where K is the number of classes, and N is the number of
observations in the mini-batch.

numClasses = 2;
validInputSize = [4 4 numClasses];
checkLayer(layer,validInputSize, 'ObservationDimension',4)

Running nnet.checklayer.QutputLayerTestCase

Test Summary:
17 Passed, 0 Failed, 0 Incomplete, 0 Skipped.
Time elapsed: 1.6227 seconds.

The test summary reports the number of passed, failed, incomplete, and skipped tests.
Use Custom Layer in Semantic Segmentation Network

Create a semantic segmentation network that uses the
dicePixelClassificationLayer.

layers = [
imagelInputlLayer([32 32 1])
convolution2dLayer(3,64, 'Padding',1)
reluLayer
maxPooling2dLayer(2, 'Stride',2)
convolution2dLayer(3,64, 'Padding',1)
reluLayer
transposedConv2dLayer(4,64, 'Stride',2, 'Cropping',1)
convolution2dLayer(1,2)
softmaxLayer
dicePixelClassificationLayer('dice')]

layers =
10x1 Layer array with layers:

1 t Image Input 32x32x1 images with 'zerocenter' normalizat:
2 t Convolution 64 3x3 convolutions with stride [1 1] and
3 Y RelLU RelLU
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4 t Max Pooling 2x2 max pooling with stride [2 2] and padd:
5 v Convolution 64 3x3 convolutions with stride [1 1] and
6 t RelU RelLU
7 t Transposed Convolution 64 4x4 transposed convolutions with stride
8 v Convolution 2 1x1 convolutions with stride [1 1] and p:
9 v Softmax softmax
10 'dice'’ Classification Output Dice loss

Load training data for semantic segmentation using imageDatastore and

pixelLabelDatastore.

dataSetDir = fullfile(toolboxdir('vision'), 'visiondata', 'triangleImages');

imageDir = fullfile(dataSetDir, 'trainingImages');

labelDir = fullfile(dataSetDir, 'traininglLabels');

imds = imageDatastore(imageDir);

classNames = ["triangle" "background"];
labelIDs = [255 0];
pxds = pixellLabelDatastore(labelDir, classNames, labellDs);

Associate the image and pixel label data using pixelLabelImageDatastore.

ds = pixellLabelImageDatastore(imds,pxds);

Set the training options and train the network.

options = trainingOptions('sgdm',
'InitiallLearnRate', le-2,
'MaxEpochs', 100,
'LearnRateDropFactor',le-1,
'LearnRateDropPeriod', 50,
'LearnRateSchedule', 'piecewise’,
'MiniBatchSize',128);

net = trainNetwork(ds,layers,options);

Training on single GPU.
Initializing image normalization.

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learnin
| | | (hh:mm:ss) | Accuracy | Loss | Rate

I

| 1| 1| 00:00:03 | 27.89% | 0.8346 | 0.01(
| 50 | 50 | 00:00:34 | 89.67% | 0.6384 | 0.01(
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| 100 | 100 | 00:01:09 | 94.35% | 0.5024 |

0.00:

Evaluate the trained network by segmenting a test image and displaying the
segmentation result.

I = imread('triangleTest.jpg"');
[C,scores] = semanticseg(I,net);
B = labeloverlay(I,C);

figure
imshow(imtile({I,B}))
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Read and Play a Video File

Load the video using a video reader object.

videoFReader = vision.VideoFileReader('ecolicells.avi');
Create a video player object to play the video file.

videoPlayer = vision.VideoPlayer;

Use a while loop to read and play the video frames. Pause for 0.1 seconds after displaying
each frame.

while ~isDone(videoFReader)

videoFrame videoFReader();
videoPlayer(videoFrame);
pause(0.1)

end



Read and Play a Video File
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Release the objects.

release(videoPlayer);
release(videoFReader);
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Find Vertical and Horizontal Edges in Image

Find Vertical and Horizontal Edges in Image

Construct Haar-like wavelet filters to find vertical and horizontal edges in an image.

Read the input image and compute the integral image.

I = imread('pout.tif');
intImage = integrallImage(I);

Construct Haar-like wavelet filters. Use the dot notation to find the vertical filter from the
horizontal filter.

horiH = integralKernel([1 1 4 3; 1 4 4 31,[-1, 11);
vertH = horiH.'
vertH =

integralKernel with properties:

BoundingBoxes: [2x4 double]
Weights: [-1 1]
Coefficients: [4x6 double]
Center: [2 3]

Size: [4 6]
Orientation: 'upright'

Display the horizontal filter.

imtool(horiH.Coefficients, 'InitialMagnification','fit');
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i {

File Tools Window Help

@O0 2 B ® M9 e v

Pixel info: (X, ¥ Pixel Value Display range: [01]

Compute the filter responses.

horiResponse
vertResponse

integralFilter(intImage,horiH);
integralFilter(intImage,vertH);

Display the results.
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figure;
imshow(horiResponse,[]);
title('Horizontal edge responses');

Horizontal edge responses

figure;
imshow(vertResponse,[]);
title('Vertical edge responses');
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Vertical edge responses
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Blur an Image Using an Average Filter

Blur an Image Using an Average Filter

Read and display the input image.

I = imread('pout.tif');
imshow(I);

Compute the integral image.
intImage = integrallmage(I);
Apply a 7-by-7 average filter.

avgH = integralKernel([1 1 7 7], 1/49);
J = integralFilter(intImage, avgH);

Cast the result back to the same class as the input image.
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J = uint8(J);
figure
imshow(J);
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Define a Filter to Approximate a Gaussian Second Order
Partial Derivative in Y Direction
ydH = integralKernel([1,1,5,9;1,4,5,3], [1, -3]);

You can also define this filter as integralKernel([1,1,5,3;1,4,5,3;1,7,5,3], [1, -2, 11);|.
This filter definition is less efficient because it requires three bounding boxes.

Visualize the filter.

ydH.Coefficients

ans = 9x5
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
2 -2 -2 -2 2
2 -2 -2 -2 2
2 -2 -2 -2 2
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
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Find Corresponding Interest Points Between Pair of
Images

1-84

Find corresponding interest points between a pair of images using local neighbhorhoods
and the Harris algorithm.

Read the stereo images.

I1
12

rgb2gray(imread('viprectification deskLeft.png'));
rgb2gray(imread('viprectification deskRight.png'));

Find the corners.

pointsl
points2

detectHarrisFeatures(Il);
detectHarrisFeatures(I2);

Extract the neighborhood features.

[featuresl,valid pointsl]
[features2,valid points2]

extractFeatures(Il,pointsl);
extractFeatures(I2,points2);

Match the features.
indexPairs = matchFeatures(featuresl, features2);

Retrieve the locations of the corresponding points for each image.

matchedPointsl
matchedPoints?2

valid pointsl(indexPairs(:,1),:)
valid points2(indexPairs(:,2),:)

’
’

Visualize the corresponding points. You can see the effect of translation between the two
images despite several erroneous matches.

figure; showMatchedFeatures(Il,I2,matchedPointsl,matchedPoints2);



Find Corresponding Interest Points Between Pair of Images
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Find Corresponding Points Using SURF Features

Use the SUREF local feature detector function to find the corresponding points between
two images that are rotated and scaled with respect to each other.

Read the two images.

I1
12

imread('cameraman.tif');
imresize(imrotate(I1,-20),1.2);

Find the SURF features.

pointsl
points2

detectSURFFeatures(Il);
detectSURFFeatures(I2);

Extract the features.

[f1,vptsl]
[f2,vpts2]

extractFeatures(Il,pointsl);
extractFeatures(I2,points2);

Retrieve the locations of matched points.

indexPairs = matchFeatures(f1l,f2) ;
matchedPointsl = vptsl(indexPairs(:,1))
matchedPoints2 vpts2(indexPairs(:,2))

’
’

Display the matching points. The data still includes several outliers, but you can see the
effects of rotation and scaling on the display of matched features.

figure; showMatchedFeatures(I1l,I2,matchedPointsl,matchedPoints2);
legend('matched points 1', 'matched points 2');
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2 matched points 1
+  matched points 2
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Detect SURF Interest Points in a Grayscale Image

Read image and detect interest points.

I = imread('cameraman.tif"');
points = detectSURFFeatures(I);

Display locations of interest in image.

imshow(I); hold on;
plot(points.selectStrongest(10));
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Using LBP Features to Differentiate Images by Texture

Read images that contain different textures.
brickWall = imread('bricks.jpg');
rotatedBrickWall = imread('bricksRotated.jpg');
carpet = imread('carpet.jpg');

Display the images.

figure

imshow(brickWall)

title('Bricks')

Bricks
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figure
imshow(rotatedBrickWall)
title('Rotated Bricks')

Rotated Bricks

figure
imshow(carpet)
title('Carpet')
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Extract LBP features from the images to encode their texture information.

lbpBricksl = extractLBPFeatures(brickWall, 'Upright', false);
lbpBricks2 = extractLBPFeatures(rotatedBrickWall, 'Upright', false);
lbpCarpet = extractLBPFeatures(carpet, 'Upright', false);

Gauge the similarity between the LBP features by computing the squared error between
them.

brickVsBrick = (lbpBricksl - 1lbpBricks2).”2;
brickVsCarpet = (lbpBricksl - 1lbpCarpet).”2;

Visualize the squared error to compare bricks versus bricks and bricks versus carpet. The
squared error is smaller when images have similar texture.

1-91



1 reatured Examples

1-92

figure
bar([brickVsBrick; brickVsCarpet]', 'grouped')
title('Squared Error of LBP Histograms')

xlabel('LBP Histogram Bins')

legend('Bricks vs Rotated Bricks', 'Bricks vs Carpet')

3.5

2.5

1.5

%1072

Squared Error of LBP Histograms

I Gricks vs Rotated Bricks
I Bricks vs Carpet
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Extract and Plot HOG Features

Extract and Plot HOG Features

Read the image of interest.

img = imread('cameraman.tif');

Extract HOG features.

[featureVector,hogVisualization] = extractHOGFeatures(img);
Plot HOG features over the original image.

figure;

imshow(img) ;

hold on;
plot(hogVisualization);
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Find Corresponding Interest Points Between Pair of
Images

1-94

Find corresponding interest points between a pair of images using local neighbhorhoods
and the Harris algorithm.

Read the stereo images.

I1
12

rgb2gray(imread('viprectification deskLeft.png'));
rgb2gray(imread('viprectification deskRight.png'));

Find the corners.

pointsl
points2

detectHarrisFeatures(Il);
detectHarrisFeatures(I2);

Extract the neighborhood features.

[featuresl,valid pointsl]
[features2,valid points2]

extractFeatures(Il,pointsl);
extractFeatures(I2,points2);

Match the features.
indexPairs = matchFeatures(featuresl, features2);

Retrieve the locations of the corresponding points for each image.

matchedPointsl
matchedPoints?2

valid pointsl(indexPairs(:,1),:)
valid points2(indexPairs(:,2),:)

’
’

Visualize the corresponding points. You can see the effect of translation between the two
images despite several erroneous matches.

figure; showMatchedFeatures(Il,I2,matchedPointsl,matchedPoints2);



Find Corresponding Interest Points Between Pair of Images
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Recognize Text Within an Image

businessCard = imread('businessCard.png');
ocrResults = ocr(businessCard)
ocrResults =

ocrText with properties:

Text: '‘ MathWorks®...'
CharacterBoundingBoxes: [103x4 double]
CharacterConfidences: [103x1 single]
Words: {16x1 cell}
WordBoundingBoxes: [16x4 double]
WordConfidences: [16x1 single]

recognizedText = ocrResults.Text;

figure;

imshow(businessCard);

text (600, 150, recognizedText, 'BackgroundColor', [1 1 11);
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' MathWorks®

The Mathworks, Inc.

3 Apple Hill Drive
Natick, MA 01760-2098
Usa

www. mathworkscom
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Run Nonmaximal Suppression on Bounding Boxes Using
People Detector

Load the pretrained people detector and disable bounding box merging.

peopleDetector = vision.PeopleDetector('ClassificationThreshold',...
0, 'MergeDetections', false);

Read an image, run the people detector, and then insert bounding boxes with confidence
scores.

I = imread('visionteaml.jpg');
[bbox,score] = step(peopleDetector,I);

I1 = insertObjectAnnotation(I, 'rectangle’,bbox,...
cellstr(num2str(score)), 'Color','r'");

Run nonmaximal suppression on the bounding boxes.

[selectedBbox,selectedScore] = selectStrongestBbox(bbox,score);

I2 = insertObjectAnnotation(I, 'rectangle',selectedBbox,...
cellstr(num2str(selectedScore)), 'Color','r');

Display detection before and after suppression.

figure, imshow(Il);
title('Detected people and detection scores before suppression');
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Detected people and detection scores before suppression

‘-l' r. it il

\l

figure, imshow(I2);
title('Detected people and detection scores after suppression');
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Detected people and detection scores after suppression

1-100



Train Stop Sign Detector

Train Stop Sign Detector

Load the positive samples data from a MAT file. The file contains a table specifying
bounding boxes for several object categories. The table was exported from the Training
Image Labeler app.

Load positive samples.

load('stopSignsAndCars.mat');

Select the bounding boxes for stop signs from the table.

positivelnstances = stopSignsAndCars(:,1:2);

Add the image folder to the MATLAB path.

imDir = fullfile(matlabroot, 'toolbox', 'vision', 'visiondata',...
'stopSignImages');

addpath(imDir);

Specify the folder for negative images.

negativeFolder = fullfile(matlabroot, 'toolbox', 'vision', 'visiondata', ...
'nonStopSigns');

Create an imageDatastore object containing negative images.
negativelmages = imageDatastore(negativeFolder);

Train a cascade object detector called 'stopSignDetector.xml' using HOG features. NOTE:
The command can take several minutes to run.

trainCascadeObjectDetector('stopSignDetector.xml',6 positivelnstances,
negativeFolder, 'FalseAlarmRate',0.1, 'NumCascadeStages',5);

Automatically setting ObjectTrainingSize to [35, 32]
Using at most 42 of 42 positive samples per stage
Using at most 84 negative samples per stage

--cascadeParams- -
Training stage 1 of 5

Used 42 positive and 84 negative samples
Time to train stage 1: 1 seconds
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Training stage 2 of 5

Used 42 positive and 84 negative samples
Time to train stage 2: 0 seconds

Training stage 3 of 5

Used 42 positive and 84 negative samples
Time to train stage 3: 3 seconds

Training stage 4 of 5

Used 42 positive and 84 negative samples
Time to train stage 4: 8 seconds

Training stage 5 of 5

Used 42 positive and 17 negative samples
Time to train stage 5: 14 seconds

Training complete

Use the newly trained classifier to detect a stop sign in an image.

detector = vision.CascadeObjectDetector('stopSignDetector.xml');

Read the test image.

img = imread('stopSignTest.jpg');

Detect a stop sign.

bbox = step(detector,img);

Insert bounding box rectangles and return the marked image.

detectedImg = insertObjectAnnotation(img, 'rectangle’,bbox, 'stop sign');

Display the detected stop sign.

figure; imshow(detectedImg);
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Remove the image directory from the path.

rmpath(imDir);
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Track an Occluded Object

Detect and track a ball using Kalman filtering, foreground detection, and blob analysis.

Create System objects to read the video frames, detect foreground physical objects, and
display results.

videoReader = vision.VideoFileReader('singleball.mp4');

videoPlayer = vision.VideoPlayer('Position',[100,100,500,400]);

foregroundDetector = vision.ForegroundDetector('NumTrainingFrames',10, ...
'InitialVariance',0.05);

blobAnalyzer = vision.BlobAnalysis('AreaOutputPort', false,...
'MinimumBlobArea',70);

Process each video frame to detect and track the ball. After reading the current video
frame, the example searches for the ball by using background subtraction and blob
analysis. When the ball is first detected, the example creates a Kalman filter. The Kalman
filter determines the ball?s location, whether it is detected or not. If the ball is detected,
the Kalman filter first predicts its state at the current video frame. The filter then uses the
newly detected location to correct the state, producing a filtered location. If the ball is
missing, the Kalman filter solely relies on its previous state to predict the ball's current
location.

kalmanFilter = []; isTrackInitialized = false;
while ~isDone(videoReader)
colorImage = step(videoReader);

foregroundMask = step(foregroundDetector, rgb2gray(colorImage));
detectedLocation step(blobAnalyzer, foregroundMask) ;
isObjectDetected size(detectedLocation, 1) > 0;

if ~isTrackInitialized
if isObjectDetected
kalmanFilter = configureKalmanFilter('ConstantAcceleration',...
detectedLocation(1l,:), [1 1 1]*1e5, [25, 10, 10], 25);
isTrackInitialized = true;
end
label = ''; circle = zeros(0,3);
else
if isObjectDetected
predict(kalmanFilter);
trackedLocation = correct(kalmanFilter, detectedLocation(1,:));
label = 'Corrected';



Track an Occluded Object

else
trackedLocation = predict(kalmanFilter);
label = 'Predicted';
end
circle = [trackedLocation, 5];
end

colorImage = insertObjectAnnotation(colorImage, 'circle’, ...
circle, label, 'Color', 'red");
step(videoPlayer, colorImage);
end
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Release resources.

release(videoPlayer);
release(videoReader);
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Track a Face in Scene

1-108

Create System objects for reading and displaying video and for drawing a bounding box of
the object.

videoFileReader = vision.VideoFileReader('visionface.avi');
videoPlayer = vision.VideoPlayer('Position',[100,100,680,520]);

Read the first video frame, which contains the object, define the region.

objectFrame = videoFileReader();
objectRegion = [264,122,93,93];

As an alternative, you can use the following commands to select the object region using a
mouse. The object must occupy the majority of the region:

figure; imshow(ohjectFrame);

objectRegion=round(getPosition(imrect))

Show initial frame with a red bounding box.

1<2t.)jec‘cImage = insertShape(objectFrame, 'Rectangle',objectRegion, 'Color', 'red');
igure;

imshow(objectImage);
title('Red box shows object region');



Track a Face in Scene

Red box shows object region

Detect interest points in the object region.

points = detectMinEigenFeatures(rgb2gray(objectFrame), 'ROI',objectRegion);

Display the detected points.

1p:c.)intImage = insertMarker(objectFrame,points.Location, '+','Color', 'white');
iqure;

imshow(pointImage);
title('Detected interest points');
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Detected interest points

Create a tracker object.

tracker = vision.PointTracker('MaxBidirectionalError',1);
Initialize the tracker.
initialize(tracker,points.Location,objectFrame);

Read, track, display points, and results in each video frame.

while ~isDone(videoFileReader)
frame = videoFileReader();
[points,validity] = tracker(frame);
out = insertMarker(frame,points(validity, :),'+');
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videoPlayer(out);
end
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Release the video reader and player.
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release(videoPlayer);
release(videoFileReader);
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Assign Detections to Tracks in a Single Video Frame

This example shows you how to assign a detection to a track for a single video frame.

Set the predicted locations of objects in the current frame. Obtain predictions using the
Kalman filter System object.

predictions = [1,1;2,2];

Set the locations of the objects detected in the current frame. For this example, there are
2 tracks and 3 new detections. Thus, at least one of the detections is unmatched, which
can indicate a new track.

detections = [1.1,1.1;2.1,2.1;1.5,3];
Preallocate a cost matrix.
cost = zeros(size(predictions,l),size(detections,1));

Compute the cost of each prediction matching a detection. The cost here, is defined as the
Euclidean distance between the prediction and the detection.

for i = l:size(predictions, 1)
diff = detections - repmat(predictions(i,:),[size(detections,1),1]);
cost(i, :) = sqrt(sum(diff .”~ 2,2));

end

Associate detections with predictions. Detection 1 should match to track 1, and detection
2 should match to track 2. Detection 3 should be unmatched.

[assignment,unassignedTracks,unassignedDetections] = ...
assignDetectionsToTracks(cost,0.2);
figure;
plot(predictions(:,1),predictions(:,2),"'*"',detections(:,1),...
detections(:,2),'ro');
hold on;
legend('predictions', 'detections');
for i = l:size(assignment,1)
text(predictions(assignment(i, 1),1)+0.1,...
predictions(assignment(i,1),2)-0.1,num2str(i));
text(detections(assignment(i, 2),1)+0.1,...
detections(assignment(i,2),2)-0.1,num2str(1i));
end
for i = 1:length(unassignedDetections)
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text(detections(unassignedDetections(i),1)+0.1,...
detections(unassignedDetections(i),2)+0.1, 'unassigned');
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Create 3-D Stereo Display

Load parameters for a calibrated stereo pair of cameras.
load( 'webcamsSceneReconstruction.mat')
Load a stereo pair of images.

I1
I2

imread('sceneReconstructionLeft.jpg');
imread('sceneReconstructionRight.jpg');

Rectify the stereo images.

[J1, J2] = rectifyStereoImages(I1l, I2, stereoParams);

Create the anaglyph.

A = stereoAnaglyph(J1, J2);

Display the anaglyph. Use red-blue stereo glasses to see the stereo effect.

figure; imshow(A);
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Measure Distance from Stereo Camera to a Face

Load stereo parameters.
load( 'webcamsSceneReconstruction.mat');
Read in the stereo pair of images.

I1
I2

imread('sceneReconstructionLeft.jpg');
imread('sceneReconstructionRight.jpg');

Undistort the images.

I1
I2

undistortImage(Il,stereoParams.CameraParametersl);
undistortImage(I2,stereoParams.CameraParameters2);

Detect a face in both images.
faceDetector = vision.CascadeObjectDetector;

facel = faceDetector(Il);
face2 = faceDetector(I2);

Find the center of the face.

centerl
center2

facel(1l:2) + facel(3:4)/2;
face2(1:2) + face2(3:4)/2;

Compute the distance from camera 1 to the face.

point3d = triangulate(centerl, center2, stereoParams);
distanceInMeters = norm(point3d)/1000;

Display the detected face and distance.

distanceAsString = sprintf('%0.2f meters', distancelInMeters);

I1 = insertObjectAnnotation(Il, 'rectangle’,facel,distanceAsString, 'FontSize',18);
I2 = insertObjectAnnotation(I2, 'rectangle',face2, distanceAsString, 'FontSize',18);
I1 = insertShape(Il, 'FilledRectangle', facel);

I2 = insertShape(I2, 'FilledRectangle', face2);

imshowpair(Il, I2, 'montage');
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Reconstruct 3-D Scene from Disparity Map

Load the stereo parameters.
load( 'webcamsSceneReconstruction.mat');
Read in the stereo pair of images.

I1
I2

imread('sceneReconstructionLeft.jpg');
imread('sceneReconstructionRight.jpg');

Rectify the images.
[J1, J2] = rectifyStereoImages(I1l,I2,stereoParams);
Display the images after rectification.

figure
imshow(cat(3,J1(:,:,1),32(:,:,2:3)), 'InitialMagnification',50);

r—._

Compute the disparity.
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1-120

disparityMap = disparitySGM(rgb2gray(J1),rgb2gray(J2));
figure
imshow(disparityMap,[0,64], 'InitialMagnification',50);

Reconstruct the 3-D world coordinates of points corresponding to each pixel from the
disparity map.

xyzPoints = reconstructScene(disparityMap,stereoParams);

Segment out a person located between 3.2 and 3.7 meters away from the camera.
Z = xyzPoints(:,:,3);

mask = repmat(Z > 3200 & Z < 3700,[1,1,3]);

J1(~mask) = 0;
imshow(J1, 'InitialMagnification',50);



Reconstruct 3-D Scene from Disparity Map
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Visualize Stereo Pair of Camera Extrinsic Parameters

Specify calibration images.
imageDir = fullfile(toolboxdir('vision'),'visiondata',
'calibration', 'stereo');

leftImages = imageDatastore(fullfile(imageDir, 'left'));
rightImages = imageDatastore(fullfile(imageDir, 'right'));
Detect the checkerboards.

[imagePoints,boardSize] = detectCheckerboardPoints(...
leftImages.Files, rightImages.Files);

Specify world coordinates of checkerboard keypoints. Square size is in millimeters.

squareSize = 108;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the stereo camera system. Both cameras have the same resolution.

I = readimage(leftImages,l);

imageSize = [size(I, 1), size(I, 2)];

cameraParams = estimateCameraParameters(imagePoints,worldPoints,
'ImageSize',imageSize);

Visualize pattern locations.

figure;
showExtrinsics(cameraParams);
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Extrinsic Parameters Visualization

Visualize camera locations.

figure;
showExtrinsics(cameraParams, 'patternCentric');
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Extrinsic Parameters Visualization
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Read Point Cloud from a PLY File

Read Point Cloud from a PLY File

ptCloud = pcread('teapot.ply');
pcshow(ptCloud);
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Write 3-D Point Cloud to PLY File

ptCloud = pcread('teapot.ply');
pcshow(ptCloud);

pcwrite(ptCloud, 'teapotOut', 'PLYFormat', 'binary');
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Visualize the Difference Between Two Point Clouds

Visualize the Difference Between Two Point Clouds

Load two point clouds that were captured using a Kinect device in a home setting.
load('livingRoom');

pcl
pc2

livingRoomData{1l};
livingRoomData{2};

Plot and set the viewpoint of point clouds.

figure

pcshowpair(pcl,pc2, 'VerticalAxis','Y', 'VerticalAxisDir', 'Down")
title('Difference Between Two Point Clouds')

xlabel('X(m)")

ylabel('Y(m)")

zlabel('Z(m)")
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Difference Between Two Point Clouds
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View Rotating 3-D Point Cloud

View Rotating 3-D Point Cloud

Load point cloud.
ptCloud = pcread('teapot.ply');

Define a rotation matrix and 3-D transform.

x = pi/180;

R =1 cos(x) sin(x) 0 0
-sin(x) cos(x) 0 O
0 0 10
0 0 0 11;

tform = affine3d(R);

Compute x- y_limits that ensure that the rotated teapot is not clipped.

lower
upper

min([ptCloud.XLimits ptCloud.YLimits]);
max ([ptCloud.XLimits ptCloud.YLimits]);

xlimits
ylimits
zlimits

[lower upper];
[lower upper];
ptCloud.ZLimits;

Create the player and customize player axis labels.
player = pcplayer(xlimits,ylimits,zlimits);
xlabel(player.Axes,'X (m)"');

ylabel(player.Axes,'Y (m)"');
zlabel(player.Axes,'Z (m)"');

1-129



1 reatured Examples

i o || = | ER
File Edit View Inset Tools Desktop Window Help o

Ddde @08 K[E

Y (m)

Rotate the teapot around the z-axis.

for i = 1:360
ptCloud = pctransform(ptCloud,tform);
view(player,ptCloud);

end
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View Rotating 3-D Point Cloud
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Hide and Show 3-D Point Cloud Figure

Load point cloud.
ptCloud = pcread('teapot.ply');
Create the player and customize player axis labels.

player = pcplayer(ptCloud.XLimits,ptCloud.YLimits,ptCloud.ZLimits);
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Hide and Show 3-D Point Cloud Figure
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Hide figure.
hide(player)
Show figure.

show(player)
view(player,ptCloud);
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Align Two Point Clouds Using ICP Algorithm

Align Two Point Clouds Using ICP Algorithm

Load point cloud data.
ptCloud = pcread('teapot.ply');

pcshow(ptCloud);
title('Teapot');

Create a transform object with 30 degree rotation along z -axis and translation [5,5,10].

A = [cos(pi/6) sin(pi/6) O
-sin(pi/6) cos(pi/6) 0O
0 0 1
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5 510 1];
tforml = affine3d(A);

Transform the point cloud.

ptCloudTformed = pctransform(ptCloud,tforml);

pcshow(ptCloudTformed) ;
title('Transformed Teapot');

Transformed Teapot

Apply the rigid registration.
tform = pcregistericp(ptCloudTformed,ptCloud, 'Extrapolate’,true);

Compare the result with the true transformation.
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Align Two Point Clouds Using ICP Algorithm

disp(tforml.T);

0.8660 0.5000 0 0
-0.5000 0.8660 0 0
0 0 1.0000 0
5.0000 5.0000 10.0000 1.0000
tform2 = invert(tform);
disp(tform2.T);

0.8660 0.5000 0.0000 0
-0.5000 0.8660 -0.0000 0
-0.0000 -0.0000 1.0000 0

5.0000 5.0000 10.0000 1.0000
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Affine Transformations of 3-D Point Cloud

1-138

This example shows affine transformation of a 3-D point cloud. The specified forward
transform can be a rigid or nonrigid transform. The transformations shown includes
rotation (rigid transform) and shearing (nonrigid transform) of the input point cloud.

Read a point cloud into the workspace.
ptCloud = pcread('teapot.ply');
Rotation of 3-D Point Cloud

Create an affine transform object that defines a 45 degree rotation along the z-axis.

A = [cos(pi/4) sin(pi/4) 0 0;
-sin(pi/4) cos(pi/4) 0 0;
0010;
0001];
tform = affine3d(A);
Transform the point cloud.
ptCloudOutl = pctransform(ptCloud,tform);
Shearing of 3-D point cloud

Create an affine transform object that defines shearing along the x-axis.

Transform the point cloud.

ptCloudOut2 = pctransform(ptCloud,tform);

Display the Original and Affine Transformed 3-D Point Clouds
Plot the original 3-D point cloud.

figurel = figure('WindowState', 'maximized');

axesl = axes('Parent',figurel, 'Position',[0.28 0.54 0.46 0.41]);

pcshow(ptCloud, 'Parent',axesl);



Affine Transformations of 3-D Point Cloud

xlabel(
ylabel(
zlabel(

X')

1 ) .

'Z')
title('3

X');
Y');
Z');
-D Point Cloud', 'FontSize',14)

Plot the rotation and shear affine transformed 3-D point clouds.

axes2 = axes('Parent',figurel, 'Position',[0.15 0.02 0.35 0.42]);
pcshow(ptCloudOutl, 'Parent',axes2);

xlabel('X");

ylabel('Y"');

zlabel('Z");

title({'Rotation of 3-D Point Cloud'}, 'FontSize',14)

axes3 = axes('Parent',figurel, 'Position',[0.5 0.02 0.35 0.42]);
pcshow(ptCloudOut2, 'Parent',axes3);

xlabel('X"');

ylabel('Y"');

zlabel('Z");

title({'Shearing of 3-D Point Cloud'}, 'FontSize',14)
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3-D Point Cloud

Rotation of 3-D Point Cloud

Shearing of 3-D Point Cloud
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Merge Two Identical Point Clouds Using Box Grid Filter

Merge Two Identical Point Clouds Using Box Grid Filter

Create two identical point clouds.

ptCloudA
ptCloudB

pointCloud(100*rand(1000,3));
copy(ptCloudA);

Merge the two point clouds.

ptCloud = pcmerge(ptCloudA,ptCloudB,1);
pcshow(ptCloud);
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Extract Cylinder from Point Cloud

Load the point cloud.

load('object3d.mat');
Display the point cloud.

figure
pcshow
xlabel('X(m)"'
ylabel('Y(m)")
zlabel('Z(m)")

title('Original Point Cloud')

ptCloud)
(m)")

—_— e~ o~ —~

Original Point Cloud

Y (m)

1-142



Extract Cylinder from Point Cloud

Set the maximum point-to-cylinder distance (5 mm) for cylinder fitting.
maxDistance = 0.005;
Set the region of interest to constrain the search.

roi = [0.4,0.6,-inf,0.2,0.1,inf];
sampleIndices = findPointsInROI(ptCloud,roi);

Set the orientation constraint.

referenceVector = [0,0,1];

Detect the cylinder and extract it from the point cloud by specifying the inlier points.

[model,inlierIndices] = pcfitcylinder(ptCloud,maxDistance, ...
referenceVector, 'SampleIndices',samplelndices);

pc = select(ptCloud,inlierIndices);

Plot the extracted cylinder.
figure

pcshow(pc)
title('Cylinder Point Cloud')
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Cylinder Point Cloud
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Detect Multiple Planes from Point Cloud

Detect Multiple Planes from Point Cloud

Load the point cloud.
load('object3d.mat"')
Display and label the point cloud.

figure
pcshow
xlabel('X(m)"
ylabel('Y(m)")
zlabel('Z(m)")
title('Original Point Cloud')

ptCloud)
(m)")

PRy

Original Point Cloud

¥ (m) . X(m)
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1-146

Set the maximum point-to-plane distance (2cm) for plane fitting.

maxDistance = 0.02;

Set the normal vector of the plane.

referenceVector = [0,0,1];

Set the maximum angular distance to 5 degrees.

maxAngularDistance = 5;

Detect the first plane, the table, and extract it from the point cloud.

[modell,inlierIndices,outlierIndices] = pcfitplane(ptCloud,...
maxDistance, referenceVector,maxAngularDistance);

planel = select(ptCloud,inlierIndices);

remainPtCloud = select(ptCloud,outlierIndices);

Set the region of interest to constrain the search for the second plane, left wall.

roi = [-inf,inf;0.4,inf;-inf,inf];
sampleIndices = findPointsInROI(remainPtCloud, roi);

Detect the left wall and extract it from the remaining point cloud.

[model2,inlierIndices,outlierIndices] = pcfitplane(remainPtCloud,...
maxDistance, 'SampleIndices',sampleIndices);

plane2 = select(remainPtCloud,inlierIndices);

remainPtCloud = select(remainPtCloud,outlierIndices);

Plot the two planes and the remaining points.

figure
pcshow(planel)
title('First Plane')



Detect Multiple Planes from Point Cloud

First Plane

figure
pcshow(plane2)
title('Second Plane')
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Second Plane

figure
pcshow(remainPtCloud)
title('Remaining Point Cloud')
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Detect Multiple Planes from Point Cloud

Remaining Point Cloud
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Detect Sphere from Point Cloud

Load data file.
load('object3d.mat');
Display original point cloud.

figure
pcshow
xlabel('X(m)"
ylabel('Y(m)")
zlabel('Z(m)")
title('Original Point Cloud')

ptCloud)
(m)")

—_— e~ o~ —~

Original Point Cloud

¥ (m) . X(m)
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Detect Sphere from Point Cloud

Set a maximum point-to-sphere distance of 1cm for sphere fitting.
maxDistance = 0.01;
Set the roi to constrain the search.

roi = [-inf,0.5,0.2,0.4,0.1,inf];
sampleIndices = findPointsInROI(ptCloud, roi);

Detect the sphere, a globe, and extract it from the point cloud.

[model,inlierIndices] = pcfitsphere(ptCloud,maxDistance, ...
'SampleIndices',sampleIndices);

globe = select(ptCloud,inlierIndices);

Plot the globe.

hold on
plot(model)
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Original Point Cloud

0.6

X(m)

figure
pcshow(globe)
title('Globe Point Cloud")
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Detect Sphere from Point Cloud

Globe Point Cloud
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Remove Outliers from Noisy Point Cloud

Create a plane point cloud.

gv = 0:0.01:1;
[X,Y] = meshgrid(gv,gv);
ptCloud = pointCloud([X(:),Y(:),0.5*ones(numel(X),1)]);

figure
pcshow(ptCloud);
title('Original Data');

Original Data

Add uniformly distributed random noise.
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Remove Outliers from Noisy Point Cloud

noise = rand (500, 3);
ptCloudA = pointCloud([ptCloud.Location; noisel]);

figure
pcshow(ptCloudA);
title('Noisy Data');

Noisy Data

Remove outliers.
ptCloudB = pcdenoise(ptCloudA);
figure;

pcshow(ptCloudB);
title('Denoised Data');
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Denocised Data
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Downsample Point Cloud Using Box Grid Filter

Downsample Point Cloud Using Box Grid Filter

Read a point cloud.
ptCloud = pcread('teapot.ply');
Set the 3-D resolution to be (0.1 x 0.1 x 0.1).

0.1;
pcdownsample(ptCloud, 'gridAverage',gridStep);

gridStep
ptCloudA

Visualize the downsampled data.

figure;
pcshow(ptCloudA);
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Compare the point cloud to data that is downsampled using a fixed step size.

stepSize = floor(ptCloud.Count/ptCloudA.Count);
indices = 1l:stepSize:ptCloud.Count;
ptCloudB = select(ptCloud, indices);

figure;
pcshow(ptCloudB) ;
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Measure Distance from Stereo Camera to a Face

Measure Distance from Stereo Camera to a Face

Load stereo parameters.
load( 'webcamsSceneReconstruction.mat');
Read in the stereo pair of images.

I1
I2

imread('sceneReconstructionLeft.jpg');
imread('sceneReconstructionRight.jpg');

Undistort the images.

I1
I2

undistortImage(Il,stereoParams.CameraParametersl);
undistortImage(I2,stereoParams.CameraParameters2);

Detect a face in both images.
faceDetector = vision.CascadeObjectDetector;

facel = faceDetector(Il);
face2 = faceDetector(I2);

Find the center of the face.

centerl
center2

facel(1l:2) + facel(3:4)/2;
face2(1:2) + face2(3:4)/2;

Compute the distance from camera 1 to the face.

point3d = triangulate(centerl, center2, stereoParams);
distanceInMeters = norm(point3d)/1000;

Display the detected face and distance.

distanceAsString = sprintf('%0.2f meters', distancelInMeters);

I1 = insertObjectAnnotation(Il, 'rectangle’,facel,distanceAsString, 'FontSize',18);
I2 = insertObjectAnnotation(I2, 'rectangle',face2, distanceAsString, 'FontSize',18);
I1 = insertShape(Il, 'FilledRectangle', facel);

I2 = insertShape(I2, 'FilledRectangle', face2);

imshowpair(Il, I2, 'montage');
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Remove Motion Artifacts From Image

Remove Motion Artifacts From Image

Create a deinterlacer object.
hdinterlacer = vision.Deinterlacer;
Read an image with motion artifacts.

I = imread('vipinterlace.png');
Apply the deinterlacer to the image.
clearimage = hdinterlacer(I);
Display the results.

imshow(I);
title('Original Image');
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Original Image

figure, imshow(clearimage);
title('Image after deinterlacing');
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Remove Motion Artifacts From Image

Image after deinterlacing
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Find Vertical and Horizontal Edges in Image

Construct Haar-like wavelet filters to find vertical and horizontal edges in an image.

Read the input image and compute the integral image.

I = imread('pout.tif');
intImage = integrallImage(I);

Construct Haar-like wavelet filters. Use the dot notation to find the vertical filter from the
horizontal filter.

horiH = integralKernel([1 1 4 3; 1 4 4 31,[-1, 11);
vertH = horiH.'
vertH =

integralKernel with properties:

BoundingBoxes: [2x4 double]
Weights: [-1 1]
Coefficients: [4x6 double]
Center: [2 3]

Size: [4 6]
Orientation: 'upright'

Display the horizontal filter.

imtool(horiH.Coefficients, 'InitialMagnification','fit');
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Find Vertical and Horizontal Edges in Image
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Compute the filter responses.

horiResponse
vertResponse

integralFilter(intImage,horiH);
integralFilter(intImage,vertH);

Display the results.
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figure;
imshow(horiResponse,[]);
title('Horizontal edge responses');

Horizontal edge responses

figure;
imshow(vertResponse,[]);
title('Vertical edge responses');
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Find Vertical and Horizontal Edges in Image

Vertical edge responses
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Single Camera Calibration

1-168

Create a set of calibration images.

images = imageSet(fullfile(toolboxdir('vision'),'visiondata',...
"calibration', 'mono'));

imageFileNames = images.ImagelLocation;

Detect the calibration pattern.

[imagePoints, boardSize] = detectCheckerboardPoints(imageFileNames);

Generate the world coordinates of the corners of the squares.

squareSizeInMM = 29;
worldPoints = generateCheckerboardPoints(boardSize, squareSizeInMM) ;

Calibrate the camera.

I = readimage(images,1);

imageSize = [size(I, 1),size(I, 2)1;

params = estimateCameraParameters(imagePoints,worldPoints,
‘ImageSize',imageSize);

Visualize the calibration accuracy.

showReprojectionErrors(params);



Single Camera Calibration
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Visualize camera extrinsics.

figure;
showExtrinsics(params);
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Extrinsic Parameters Visualization

100

drawnow;

Plot detected and reprojected points.

figure;

imshow(imageFileNames{1});

hold on;

plot(imagePoints(:,1,1), imagePoints(:,2,1),'go"');
plot(params.ReprojectedPoints(:,1,1),params.ReprojectedPoints(:,2,1), " 'r+');
legend('Detected Points', 'ReprojectedPoints');

hold off;
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Remove Distortion from an Image Using the Camera
Parameters Object

Use the camera calibration functions to remove distortion from an image. This example
creates a vision.CameraParameters object manually, but in practice, you would use
the estimateCameraParameters or the Camera Calibrator app to derive the object.

Create a vision.CameraParameters object manually.

IntrinsicMatrix = [715.2699 0 0; 0 711.5281 0; 565.6995 355.3466 1];
radialDistortion = [-0.3361 0.0921];
cameraParams = cameraParameters('IntrinsicMatrix',IntrinsicMatrix, 'RadialDistortion', r:

Remove distortion from the images.

imread(fullfile(matlabroot, 'toolbox"', 'vision', 'visiondata', 'calibration', 'mono"', '1ir
undistortImage(I, cameraParams);

I =
J =
Display the original and the undistorted images.

figure; imshowpair(imresize(I,0.5),imresize(J,0.5), 'montage');
title('Original Image (left) vs. Corrected Image (right)');
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Plot Spherical Point Cloud with Texture Mapping

Plot Spherical Point Cloud with Texture Mapping

Generate a sphere consisting of 600-by-600 faces.

numFaces = 600;
[Xx,y,z] = sphere(numFaces);

Plot the sphere using the default color map.

figure;

pcshow([x(:),y(:),z(:)]1);
title('Sphere with Default Color Map');
xlabel('X");

ylabel('Y");

zlabel('Z");
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Sphere with Default Color Map

Load and display an image for texture mapping.

I = im2double(imread('visionteaml.jpg'));
imshow(I);
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Plot Spherical Point Cloud with Texture Mapping

Resize and flip the image for mapping the coordinates.

J = flipud(imresize(I,size(x)));
Plot the sphere with the color texture.

pcshow([x(:),y(:),z(:)],reshape(J3,[1,3));
title('Sphere with Color Texture');
xlabel('X");

ylabel('Y");

zlabel('Z');
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Sphere with Color Texture
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Plot Color Point Cloud from Kinect for Windows

Plot Color Point Cloud from Kinect for Windows

This example shows how to plot a color point cloud from Kinect images. This example
requires the Image Acquisition Toolbox™ software and the Kinect camera and a
connection to the camera.

Create a System object™ for the color device.

colorDevice = imaq.VideoDevice('kinect',1)

Change the returned type of color image from single to unint8.
colorDevice.ReturnedDataType = 'uint8';

Create a System object for the depth device.

depthDevice = imaq.VideoDevice('kinect',?2)

Initialize the camera.

step(colorDevice);
step(depthDevice);

Load one frame from the device.

colorImage
depthImage

= step(colorDevice);
= step(depthDevice);

Extract the point cloud.

ptCloud = pcfromkinect(depthDevice,depthImage,colorImage);

Initialize a point cloud player to visualize 3-D point cloud data. The axis is set
appropriately to visualize the point cloud from Kinect.

player = pcplayer(ptCloud.XLimits,ptCloud.YLimits,ptCloud.ZLimits, ...
'VerticalAxis','y', 'VerticalAxisDir', 'down');

xlabel(player.Axes,'X (m)"');
ylabel(player.Axes,'Y (m)"');
zlabel(player.Axes,'Z (m)"');

Acquire and view 500 frames of live Kinect point cloud data.

for i = 1:500
colorImage = step(colorDevice);
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depthImage = step(depthDevice);
ptCloud = pcfromkinect(depthDevice,depthImage,colorImage);

view(player,ptCloud);
end
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Plot Color Point Cloud from Kinect for Windows
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Release the objects.

release(colorDevice);
release(depthDevice);

1-180



Estimate Optical Flow Using Farneback Method

Estimate Optical Flow Using Farneback Method

Read a video file. Specify the timestamp of the frame to be read.

vidReader = VideoReader('visiontraffic.avi', 'CurrentTime',11);

Create an optical flow object for estimating the optical flow using Farneback method. The
output is an object specifying the optical flow estimation method and its properties.

opticFlow = opticalFlowFarneback

opticFlow =
opticalFlowFarneback with properties:

NumPyramidLevels: 3
PyramidScale: 0.5000
NumIterations: 3
NeighborhoodSize: 5
FilterSize: 15

Create a custom figure window to visualize the optical flow vectors.

h = figure;

movegui(h);

hViewPanel = uipanel(h, 'Position',[0 @ 1 1],'Title','Plot of Optical Flow Vectors');
hPlot = axes(hViewPanel);

Read the image frames and convert to grayscale images. Estimate the optical flow from
consecutive image frames. Display the current image frame and plot the optical flow
vectors as quiver plot.

while hasFrame(vidReader)
frameRGB = readFrame(vidReader);
frameGray = rgb2gray(frameRGB) ;
flow = estimateFlow(opticFlow, frameGray);

imshow(frameRGB)

hold on

plot(flow, 'DecimationFactor',[5 5], 'ScaleFactor',2, 'Parent',hPlot);
hold off

pause(10™-3)
end
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Plot of Optical Flow Yectors -
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Estimate Optical Flow Using Farneback Method

~Plot of Optical Flove Yectars
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Compute Optical Flow Using Lucas-Kanade DoG Method

Read a video file. Specify the timestamp of the frame to be read.

vidReader = VideoReader('visiontraffic.avi', 'CurrentTime',11);

Create an optical flow object for estimating the optical flow using Lucas-Kanade DoG
method. Specify the threshold for noise reduction. The output is an optical flow object
specifying the optical flow estimation method and its properties.

opticFlow = opticalFlowLKDoG('NoiseThreshold',0.0005)

opticFlow =
opticalFlowLKDoG with properties:

NumFrames: 3
ImageFilterSigma: 1.5000
GradientFilterSigma: 1
NoiseThreshold: 5.0000e-04

Create a custom figure window to visualize the optical flow vectors.

h = figure;

movegui(h);

hViewPanel = uipanel(h, 'Position',[0 0 1 1],'Title', 'Plot of Optical Flow Vectors');
hPlot = axes(hViewPanel);

Read the image frames and convert to grayscale images. Estimate the optical flow from
consecutive image frames. Display the current image frame and plot the optical flow
vectors as quiver plot.

while hasFrame(vidReader)
frameRGB = readFrame(vidReader);
frameGray = rgb2gray(frameRGB);
flow = estimateFlow(opticFlow, frameGray);

imshow(frameRGB)

hold on

plot(flow, 'DecimationFactor',[5 5], 'ScaleFactor',35, 'Parent',hPlot);
hold off

pause(10™-3)
end
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Compute Optical Flow Using Lucas-Kanade DoG Method

~Plot of Optical Flove Yectars
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~Plot of Optical Flove Yectars
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Estimate Optical Flow Using Horn-Schunck Method

Estimate Optical Flow Using Horn-Schunck Method

Create a VideoReader object for the input video file, visiontraffic.avi. Specify the
timestamp of the frame to read as 11.

vidReader = VideoReader('visiontraffic.avi', 'CurrentTime',11);

Specify the optical flow estimation method as opticalFlowHS. The output is an object
specifying the optical flow estimation method and its properties.

opticFlow = opticalFlowHS

opticFlow =
opticalFlowHS with properties:

Smoothness: 1
MaxIteration: 10
VelocityDifference: 0

Create a custom figure window to visualize the optical flow vectors.

h = figure;

movegui(h);

hViewPanel = uipanel(h, 'Position',[0 0 1 1],'Title', 'Plot of Optical Flow Vectors');
hPlot = axes(hViewPanel);

Read image frames from the VideoReader object and convert to grayscale images.
Estimate the optical flow from consecutive image frames. Display the current image
frame and plot the optical flow vectors as quiver plot.

while hasFrame(vidReader)
frameRGB = readFrame(vidReader);
frameGray = rgb2gray(frameRGB);
flow = estimateFlow(opticFlow, frameGray);

imshow(frameRGB)

hold on

plot(flow, 'DecimationFactor',[5 5], 'ScaleFactor',60, 'Parent',hPlot);
hold off

pause(10™-3)
end

1-187



1 reatured Examples

~Plot of Optical Flowe Vectars
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Create an Optical Flow Object and Plot Its Velocity

Create an Optical Flow Object and Plot Its Velocity

Create an optical flow object from two equal-sized velocity matrices.

VX
Vy

randn(100,100);
randn(100,100);

opflow = opticalFlow(Vx,Vy);

Inspect the properties of the optical flow object. The orientation and the magnitude are
computed from the velocity matrices.

opflow
opflow =

opticalFlow with properties:

Vx:

Vy:
Orientation:
Magnitude:

Plot the velocity of the object as a quiver plot.

100x100 double]
100x100 double]
100x100 double]
100x100 double]

—_r———

plot(opflow, 'DecimationFactor',[10 10], 'ScaleFactor',10);
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Point Cloud Processing

* “Point Cloud Registration Workflow” on page 2-2
* “The PLY Format” on page 2-4



2 Point Cloud Processing

Point Cloud Registration Workflow

Complete Point Cloud Reqistration Workflow

Point Cloud A Point Cloud B
i u
Remove n!r[iers T Remove outliers
pcdenoise pcdenoise
| | | |
v v
Downsample Critical Downsample
pocdownsample Random or Grid fverage pcdownsample

Rigid Registration
pcregrigid

Match points betwesn moving and ficed point clowds - kd Tree

Remowe incomect matches - Outlier Filter ‘InliemrRatio’

Recover rotation and franslation - Minimize Ermor
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See Also

pcregistericp

Related Examples
. “3-D Point Cloud Registration and Stitching”
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The PLY Format

2-4

In this section...

“File Header” on page 2-4
“Data” on page 2-6

“Common Elements and Properties” on page 2-7

The version 1.0 PLY format, also known as the Stanford Triangle Format, defines a flexible
and systematic scheme for storing 3D data. The ASCII header specifies what data is in the
file by defining "elements" each with a set of "properties." Many PLY files only have vertex
and face data, however, it is possible to also include other data such as color information,
vertex normals, or application-specific properties.

Note The Computer Vision Toolbox point cloud data functions only support the (x,y,z)
coordinates, normals, and color properties.

File Header

An example header (italicized text is comment):

ply file ID

format binary big endian 1.0 specify data format and version
element vertex 9200 define "vertex" element
property float x

property float y

property float z

element face 18000 define "face" element

property list uchar int vertex indices

end header data starts after this line

The file begins with "ply," identifying that it is a PLY file. The header must also include a
format line with the syntax

format <data format> <PLY version>



The PLY Format

Supported data formats are "ascii" for data stored as text and "binary little endian" and
"binary big endian" for binary data (where little/big endian refers to the byte ordering of
multi-byte data). Element definitions begin with an "element" line followed by element
property definitions

element <element name><number in file>
property <data type><property name 1>
property <data type><property name 2>
property <data type><property name 3>

For example, "element vertex 9200" defines an element "vertex" and specifies that 9200
vertices are stored in the file. Each element definition is followed by a list of properties of
that element. There are two kinds of properties, scalar and list. A scalar property
definition has the syntax

property <data type><property name>

where <data type> is

Name Type

char 8-bit) character

uchar 8-bit) unsigned character
16-bit) short integer

(
(
(
ushort (16-bit) unsigned short integer
(
(
(
(

short

int 32-bit) integer

32-bit) unsigned integer

uint

float
double

32-bit) single-precision float

64-bit) double-precision float

For compatibility between systems, note that the number of bits in each data type must
be consistent. A list type is stored with a count followed by a list of scalars. The definition
syntax for a list property is

property list <count data type><data type><property name>

For example,
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property list uchar int vertex index

defines vertex index properties are stored starting with a byte count followed by integer
values. This is useful for storing polygon connectivity as it has the flexibility to specify a
variable number of vertex indices in each face.

The header can also include comments. The syntax for a comment is simply a line
beginning with "comment" followed by a one-line comment:

comment<comment text>

Comments can provide information about the data like the file's author, data description,
data source, and other textual data.

Data

Following the header, the element data is stored as either ASCII or binary data (as
specified by the format line in the header). After the header, the data is stored in the
order the elements and properties were defined. First, all the data for the first element
type is stored. In the example header, the first element type is "vertex" with 9200 vertices
in the file, and with float properties "x," "y," and "z."

float vertex[1].x

float vertex[1]y

float vertex[1].z

float vertex[2].x

float vertex[2].y

float vertex[2].z

float vertex[9200].x

float vertex[9200].y

float vertex[9200].z

In general, the properties data for each element is stored one element at a time.

<property 1><property 2> ... <property N> element[1]
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<property 1><property 2> ... <property N> element[2]

The list type properties are stored beginning with a count and followed by a list of
scalars. For example, the "face" element type has the list property "vertex indices" with
uchar count and int scalar type.

uchar count

int face[l].vertex indices[1]

int face[1l].vertex indices[2]

int face[1].vertex indices[3]

int face[l].vertex indices[count]

uchar count

int face[2].vertex indices[1]

int face[2].vertex indices[2]

int face[2].vertex indices[3]

int face[2].vertex indices[count]

Common Elements and Properties

While the PLY format has the flexibility to define many types of elements and properties, a
common set of elements are understood between programs to communicate common 3-D
data types. Turk suggests elements and property names that programs should try to make
standard.
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X

Requi [Eleme |Property Data Type Property Description
red nt
Core
Prope
rty
v vertex |x float X,y,Z coordinates
v y float
v z float
nx float x,y,Zz of normal
ny float
nz float
red uchar vertex color
green uchar
blue uchar
alpha uchar amount of transparency
material inde |int index to list of materials

face |vertex indices|list of int indices to vertices
back red uchar backside color
back green |uchar
back blue uchar
edge |vertexl int index to vertex
vertex?2 int index to other vertex
crease tag uchar crease in subdivision surface
materi |red uchar material color
al
green uchar
blue uchar
alpha uchar amount of transparency
reflect coeff |float amount of light reflected




See Also

refract coeff |float amount of light refracted
refract index |float index of refraction
extinct coeff |float extinction coefficent

See Also

pcread | pcwrite
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* “Install Computer Vision Toolbox Add-on Support Files” on page 3-2
* “Install OCR Language Data Files” on page 3-3
» “Install and Use Computer Vision Toolbox OpenCV Interface” on page 3-7
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Install Computer Vision Toolbox Add-on Support Files

3-2

After you install third-party support files, you can use the data with the Computer Vision
Toolbox product. Use one of two ways to install the Add-on support files.

* Select Get Add-ons from the Add-ons drop-down menu from the MATLAB® desktop.
The Add-on files are in the “MathWorks Features” section.

* Type visionSupportPackages in a MATLAB Command Window and follow the
prompts.

Note You must have write privileges for the installation folder.

When a new version of MATLAB software is released, repeat this process to check for
updates. You can also check for updates between releases.



Install OCR Language Data Files

Install OCR Language Data Files

In this section...

“Installation” on page 3-3

“Pretrained Language Data and the ocr function” on page 3-3

OCR Language Data files contain pretrained language data from the OCR Engine,
tesseract-ocr, to use with the ocr function.

Installation

After you install third-party support files, you can use the data with the Computer Vision
Toolbox product. Use one of two ways to install the Add-on support files.

* Select Get Add-ons from the Add-ons drop-down menu from the MATLAB desktop.
The Add-on files are in the “MathWorks Features” section.

* Type visionSupportPackages in a MATLAB Command Window and follow the
prompts.

Note You must have write privileges for the installation folder.

When a new version of MATLAB software is released, repeat this process to check for
updates. You can also check for updates between releases.

Pretrained Language Data and the ocr function

After you install the pretrained language data files, you can specify one or more
additional languages using the Language property of the ocr function. Use the
appropriate language character vector with the property.

txt = ocr(img, 'Language', 'Finnish');
List of OCR language data in support package

e 'Afrikaans'
« 'Albanian'
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* 'AncientGreek'

* 'Arabic'

» 'Azerbaijani'

* 'Basque’

* 'Belarusian'

* 'Bengali'

* 'Bulgarian'

+ 'Catalan'

* 'Cherokee'

* 'ChineseSimplified'
* 'ChineseTraditional’
* 'Croatian'

*+ 'Czech'

* 'Danish'’
* 'Dutch'’

+ 'English'

« 'Esperanto'

+ 'EsperantoAlternative'
 'Estonian'

* 'Finnish'

* 'Frankish'

* 'French'

*+ 'Galician'

« 'German'
* 'Greek'
* 'Hebrew'
e 'Hindi'

* 'Hungarian'
e 'Icelandic'
e 'Indonesian'
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'Italian'
'ItalianOld’
'Japanese’
'Kannada'
'Korean'
'Latvian'
'Lithuanian’
'Macedonian'
'Malay'
'Malayalam'
'Maltese'
'MathEquation'
'MiddleEnglish’
'MiddleFrench’
'Norwegian'
'Polish’
'Portuguese’
'Romanian'
'Russian’
'SerbianLatin'
'Slovakian'
'Slovenian'
'Spanish’
'Spanish0ld’
'Swahili'
'Swedish'
'Tagalog'
'Tamil'
'Telugu'
'Thai'
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e 'Turkish'
 'Ukrainian'

See Also

OCR Trainer | ocr | visionSupportPackages

Related Examples
. “Recognize Text Using Optical Character Recognition (OCR)”



Install and Use Computer Vision Toolbox OpenCV Interface

Install and Use Computer Vision Toolbox OpenCV

Interface
Use the OpenCV Interface files to integrate your OpenCV C++ code into MATLAB and

build MEX-files that call OpenCV functions. The support package also contains graphics
processing unit (GPU) support.

In this section...

“Installation” on page 3-7

“Support Package Contents” on page 3-7

“Create MEX-File from OpenCV C++ file” on page 3-8
“Use the OpenCV Interface C++ API” on page 3-9
“Create Your Own OpenCV MEX-files” on page 3-10
“Run OpenCV Examples” on page 3-10

Installation

After you install third-party support files, you can use the data with the Computer Vision
Toolbox product. Use one of two ways to install the Add-on support files.

* Select Get Add-ons from the Add-ons drop-down menu from the MATLAB desktop.
The Add-on files are in the “MathWorks Features” section.

* Type visionSupportPackages in a MATLAB Command Window and follow the
prompts.

Note You must have write privileges for the installation folder.

When a new version of MATLAB software is released, repeat this process to check for
updates. You can also check for updates between releases.

Support Package Contents

The OpenCV Interface support files are installed in the visionopencv folder. To find the
path to this folder, type the following command:
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fileparts(which('mex0OpenCV'))

The visionopencv folder contain these files and folder.

Files Contents

example folder |Template Matching, Foreground Detector, and Oriented FAST and
Rotated BRIEF (ORB) examples, including a GPU version. Each
subfolder in the example folder contains a README . txt file with step-
by-step instructions.

registry Registration files.

folder

mexOpenCV.m |Function to build MEX-files.
file

README. txt Help file.

file

The mex function uses prebuilt OpenCV libraries, which ship with the Computer Vision
Toolbox product. Your compiler must be compatible with the one used to build the
libraries. The following compilers are used to build the OpenCV libraries for MATLAB

host:

Operating System Compatible Compiler

Windows® 64 bit Microsoft® Visual Studio® 2015 Professional or Visual Studio
2017

Linux® 64 bit gcc-4.9.3 (g++)

Mac 64 bit Xcode 6.2.0 (Clang++)

Create MEX-File from OpenCV C++ file

This example creates a MEX-file from a wrapper C++ file and then tests the newly
created file. The example uses the OpenCV template matching algorithm wrapped in a C+
+ file, which is located in the example/TemplateMatching folder.

1 Change your current working folder to the example/TemplateMatching folder:

cd(fullfile(fileparts(which('mex0OpenCV')), 'example', filesep, 'TemplateMatching'))
2 Create the MEX-file from the source file:
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mex0penCV matchTemplateOCV.cpp

3 Run the test script, which uses the generated MEX-file:

testMatchTemplate

Use the OpenCV Interface C++ API

The mex0penCV interface utility functions convert data between OpenCV and MATLAB.
These functions support CPP-linkage only. GPU support is available on glnxa64, win64,
and Mac platforms. The GPU-specific utility functions support CUDA enabled NVIDIA
GPU with compute capability 2.0 or higher. See the Parallel Computing Toolbox™ System
Requirements, The GPU utility functions require the Parallel Computing Toolbox software.

Function

Description

ocvCheckFeaturePointsStruct

Check that MATLAB struct represents feature points

ocvStructToKeyPoints Convert MATLAB feature points struct to OpenCV
KeyPoint vector

ocvKeyPointsToStruct Convert OpenCV KeyPoint vector to MATLAB struct

ocvMxArrayToCvRect Convert a MATLAB struct representing a rectangle
to an OpenCV CvRect

ocvCvRectToMxArray Convert OpenCV CvRect to a MATLAB struct

ocvCvBox2DToMxArray Convert OpenCV CvBox2D to a MATLAB struct

ocvCvRectToBoundingBox {DataType}

Convert vector<cv: :Rect> to M-by-4 mxArray of
bounding boxes

ocvMxArrayToSize {DataType}

Convert 2-element mxArray to cv::Size

ocvMxArrayToImage {DataType}

Convert column major mxArray to row major
cv: :Mat for image

ocvMxArrayToMat {DataType}

Convert column major mxArray to row major
cv: :Mat for generic matrix

ocvMxArrayFromImage {DataType}

Convert row major cv: :Mat to column major
mxArray for image

ocvMxArrayFromMat {DataType}

Convert row major cv: :Mat to column major
mxArray for generic matrix.

ocvMxArrayFromVector

Convert numeric vectorT to mxArray
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Function Description

ocvMxArrayFromPoints2f Converts vector<cv::Point2f>to mxArray
GPU Function Description

ocvMxGpuArrayToGpuMat {DataType} Create cv: :gpu: :GpuMat from gpuArray
ocvMxGpuArrayFromGpuMat {DataType} Create gpuArray from cv: :gpu: :GpuMat

Create Your Own OpenCV MEX-files

Call the mxArray function with your source file.

mex0penCV yourfile.cpp

For help creating MEX files, at the MATLAB command prompt, type:
help mex0OpenCV

Run OpenCV Examples

Each example subfolder in the OpenCV Interface support package contains all the files
you need to run the example. To run an example, you must call the mex0OpenCV function
with one of the supplied source files.

Run Template Matching Example

1 Change your current working folder to the example/TemplateMatching folder:

cd(fullfile(fileparts(which('mex0OpenCV')), 'example', filesep, 'TemplateMatching'))
2 Create the MEX-file from the source file:

mex0penCV matchTemplateOCV.cpp
3 Run the test script, which uses the generated MEX-file:

testMatchTemplate
Run Foreground Detector Example

1 Change your current working folder to the example/ForegroundDetector folder:

cd(fullfile(fileparts(which('mex0OpenCV')), 'example', filesep, 'ForegroundDetector'))
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2 Create the MEX-file from the source file:

mex0penCV backgroundSubtractor0CV.cpp
3 Run the test script that uses the generated MEX-file:

testBackgroundSubtractor.m
Run Oriented FAST and Rotated BRIEF (ORB) Detector Example

1 Change your current working folder to the example/ORB folder:

cd(fullfile(fileparts(which('mexOpenCV')), 'example',filesep, 'ORB'))
2 Create the MEX-file for the detector from the source file:

mex0penCV detectORBFeaturesOCV.cpp
3 Create the MEX-file for the extractor from the source file:

mex0penCV extractORBFeaturesOCV.cpp
4  Run the test script, which uses the generated MEX-files:

testORBFeaturesOCV.m
Run Detect ORB Features (GPU Version) Example
1 Change your current working folder to the example/ORB_GPU folder:

cd(fullfile(fileparts(which('mex0OpenCV')), 'example', filesep, 'ORB GPU'))
2 Create the MEX-file for the detector from the source file.

PC:
mex0penCV detectORBFeaturesOCV_GPU.cpp -lgpu -lmwocvgpumex -largeArrayDims
Linux/Mac:

mex0OpenCV detectORBFeaturesOCV_GPU.cpp -lmwgpu -lmwocvgpumex -largeArrayDims
3 Run the test script, which uses the generated MEX-file:

testORBFeaturesOCV_GPU.m

See Also
“C Matrix API” (MATLAB) | mxArray
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More About
. “Install Computer Vision Toolbox Add-on Support Files” on page 3-2
. Using OpenCV with MATLAB
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Input, Output, and Conversions

Learn how to import and export videos, and perform color space and video image
conversions.

“Export to Video Files” on page 4-2

“Import from Video Files” on page 4-4

“Batch Process Image Files” on page 4-6

“Display a Sequence of Images” on page 4-8

“Partition Video Frames to Multiple Image Files” on page 4-11
“Combine Video and Audio Streams” on page 4-15

“Import MATLAB Workspace Variables” on page 4-17
“Resample Image Chroma” on page 4-19

“Convert Intensity Images to Binary Images” on page 4-24
“Convert R'G'B' to Intensity Images” on page 4-34

“Process Multidimensional Color Video Signals” on page 4-38
“Video Formats” on page 4-43

“Image Formats” on page 4-45
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Export to Video Files

4-2

The Computer Vision Toolbox blocks enable you to export video data from your Simulink®
model. In this example, you use the To Multimedia File block to export a multimedia file
from your model. This example also uses Gain blocks from the Math Operations
Simulink library.

You can open the example model by typing at the MATLAB command line.
ex_export to mmf

1  Run your model.
2 You can view your video in the To Video Display window.

R Tovi.[ o | & |l

View Settings Help
® -
3

':‘

By increasing the red, green, and blue color values, you increase the contrast of the
video. The To Multimedia File block exports the video data from the Simulink model to a
multimedia file that it creates in your current folder.

This example manipulated the video stream and exported it from a Simulink model to a
multimedia file. For more information, see the To Multimedia File block reference page.

Setting Block Parameters for this Example

The block parameters in this example were modified from default values as follows:


matlab:ex_export_to_mmf

Export to Video Files

Block

Parameter

Gain

The Gain blocks are used to increase the red, green, and blue
values of the video stream. This increases the contrast of the
video:

* Main pane, Gain = 1.2

* Signal Attributes pane, Output data type = Inherit:
Same as input

To Multimedia File

The To Multimedia File block exports the video to a
multimedia file:

* File name = my output.avi

* Write = Video only

+ Image signal = Separate color signals

Configuration Parameters

You can locate the Model Configuration Parameters by selecting Model
Configuration Parameters from the Simulation menu. For this example, the
parameters on the Solver pane, are set as follows:

* Stop time = 20

Type = Fixed-step

Solver = Discrete (no continuous states)
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Import from Video Files

4-4

In this example, you use the From Multimedia File source block to import a video stream
into a Simulink model and the To Video Display sink block to view it. This procedure
assumes you are working on a Windows platform.

You can open the example model by typing at the MATLABcommand line.
ex_import_mmf

1  Run your model.

2 View your video in the To Video Display window that automatically appears when you
start your simulation.

A Tovi.| = | &[5

View Settings Help

You have now imported and displayed a multimedia file in the Simulink model. In the
“Export to Video Files” on page 4-2 example you can manipulate your video stream and
export it to a multimedia file.

For more information on the blocks used in this example, see the From Multimedia File
and To Video Display block reference pages.

Setting Block Parameters for this Example

The block parameters in this example were modified from default values as follows:


matlab:ex_import_mmf

Import from Video Files

Block

Parameter

From Multimedia File

Use the From Multimedia File block to import the multimedia
file into the model:

* Ifyou do not have your own multimedia file, use the default
vipmen.avi file, for the File name parameter.

» If the multimedia file is on your MATLAB path, enter the
filename for the File name parameter.

+ If the file is not on your MATLAB path, use the Browse
button to locate the multimedia file.

* Set the Image signal parameter to Separate color
signals.

By default, the Number of times to play file parameter is set
to inf. The model continues to play the file until the simulation
stops.

To Video Display

Use the To Video Display block to view the multimedia file.
* Image signal: Separate color signals

Set this parameter from the Settings menu of the display
viewer.

Configuration Parameters

You can locate the Model Configuration Parameters by selecting Model
Configuration Parameters from the Simulation menu. For this example, the
parameters on the Solver pane, are set as follows:

* Stop time = 20
+ Type = Fixed-step

* Solver = Discrete (no continuous states)
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Batch Process Image Files

4-6

A common image processing task is to apply an image processing algorithm to a series of
files. In this example, you import a sequence of images from a folder into the MATLAB
workspace.

Note In this example, the image files are a set of 10 microscope images of rat prostate
cancer cells. These files are only the first 10 of 100 images acquired.

1 Specify the folder containing the images, and use this information to create a list of
the file names, as follows:

fileFolder = fullfile(matlabroot, 'toolbox', 'images', 'imdata');
dirQutput dir(fullfile(fileFolder, 'AT3 1m4 *.tif'"));
fileNames {dirQutput.name}'

2 View one of the images, using the following command sequence:

I = imread(fileNames{1});
imshow(I);
text(size(I,2),size(I,1)+15,
'Image files courtesy of Alan Partin',
'"FontSize',7, 'HorizontalAlignment', 'right');
text(size(I,2),size(I,1)+25,
'Johns Hopkins University', ...
'"FontSize',7, 'HorizontalAlignment', 'right');
3 Use a for loop to create a variable that stores the entire image sequence. You can use
this variable to import the sequence into Simulink.

for i = 1l:length(fileNames)
my video(:,:,1i) = imread(fileNames{i});
end

For additional information about batch processing, see the “Image Sequences and Batch
Processing” (Image Processing Toolbox) section for the Image Processing Toolbox™.

Configuration Parameters

You can locate the Model Configuration Parameters by selecting Model
Configuration Parameters from the Simulation menu. For this example, the
parameters on the Solver pane, are set as follows:



Batch Process Image Files

* Stop time = 10
* Type = Fixed-step
* Solver =Discrete (no continuous states)
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Display a Sequence of Images

4-8

This example displays a sequence of images, which were saved in a folder, and then
stored in a variable in the MATLAB workspace. At load time, this model executes the code
from the “Batch Process Image Files” on page 4-6 example, which stores images in a
workspace variable.

You can open the example model by typing at the MATLAB command line.
ex_display sequence of images

1 The Video From Workspace block reads the files from the MATLAB workspace. The
Signal parameter is set to the name of the variable for the stored images. For this
example, it is set to my video.

The Video Viewer block displays the sequence of images.
Run your model. You can view the image sequence in the Video Viewer window.


matlab:ex_display_sequence_of_images

Display a Sequence of Images

[ B video viewer =)
File Tools View Simulation Help N
= O &5 | = S | £ 100% -
® > @ =

Ready |-480x640 [T=1.000

4 Because the Video From Workspace block's Sample time parameter is set to 1 and
the Stop time parameter in the configuration parameters, is set to 10, the Video
Viewer block displays 10 images before the simulation stops.

Pre-loading Code
To find or modify the pre-loaded code, select File > Model Properties > Model

Properties. Then select the Callbacks tab. For more details on how to set-up callbacks,
see “Callbacks for Customized Model Behavior” (Simulink).
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Configuration Parameters

You can locate the Model Configuration Parameters by selecting Model
Configuration Parameters from the Simulation menu. For this example, the
parameters on the Solver pane, are set as follows:

* Stop time = 10
* Type = Fixed-step
* Solver =Discrete (no continuous states)
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Partition Video Frames to Multiple Image Files

In this example, you use the To Multimedia File block, the Enabled Subsystem block, and
a trigger signal, to save portions of one AVI file to three separate AVI files.

You can open the example model by typing at the MATLAB command line.
ex_vision partition video frames to multiple files

1  Run your model.

2 The model saves the three output AVI files in your current folder.

3 View the resulting files by typing the following commands at the MATLAB command
prompt:

implay outputl.avi
implay output2.avi
implay output3.avi

4  Press the Play button.

For more information on the blocks used in this example, see the From Multimedia File,
Insert Text, Enabled Subsystem, and To Multimedia File block reference pages.

Setting Block Parameters for this Example

The block parameters in this example were modified from default values as follows:

Block Parameter
From Multimedia File |The From Multimedia File block imports an AVI file into the
model.

* C(Cleared Inherit sample time from file checkbox.
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Block

Parameter

Insert Text

The example uses the Insert Text block to annotate the video
stream with frame numbers. The block writes the frame
number in green, in the upper-left corner of the output video
stream.

e Text: 'Frame %d'
e Color: [0 1 0]
* Location: [10 10]

To Multimedia File

The To Multimedia File blocks send the video stream to three
separate AVI files. These block parameters were modified as
follows:

* File name: outputl.avi, output2.avi, and
output3.avi, respectively

* Write: Video only

Counter

The Counter block counts the number of video frames. The
example uses this information to specify which frames are sent
to which file. The block parameters are modified as follows:

* Number of bits: 8

* Sample time: 1/30

Bias

The bias block adds a bias to the input. The block parameters
are modified as follows:

 Bias: 1

Compare To Constant

The Compare to Constant block sends frames 1 to 9 to the first
AVI file. The block parameters are modified as follows:

* Operator: <
e Constant value: 10




Partition Video Frames to Multiple Image Files

Block

Parameter

Compare To Constant1
Compare To Constant2

The Compare to Constantl and Compare to Constant2 blocks
send frames 10 to 19 to the second AVI file. The block
parameters are modified as follows:

* Operator: >=

* Constant value: 10

The Compare to Constant2 block parameters are modified as
follows:

* Operator: <
¢ Constant value: 20

Compare To Constant3

The Compare to Constant3 block send frames 20 to 30 to the
third AVI file. The block parameters are modified as follows:

* Operator: >=
¢ Constant value: 20

Compare To Constant4

The Compare to Constant4 block stops the simulation when
the video reaches frame 30. The block parameters are
modified as follows:

* Operator: ==

* Constant value: 30

*  Output data type: boolean

Using the Enabled Subsystem Block

Each To Multimedia File block gets inserted into one Enabled Subsystem block, and
connected to it's input. You can do this, by double-clicking the Enabled Subsystem blocks,
then click-and-drag a To Multimedia File block into it.

Each enabled subsystem should look similar to the subsystem shown in the following

figure.
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'bi ex_vision_partition_video_frames_to_multiple_files/Enabled Subsystem EI@
File Edit View Display Diagram Simulation Analysis Code Tools Help
]| = el ; iid
H-BEe e 4 - GOk @ wo » D~ -
Model Browser = | Enabled Subsystem |
4 [Pa| ex_vision_partition_video_f| & |Pa| ex_vision_partition_video_frames_to_multiple_files b |Pa|Enabled Subsystem -
Enabled Subsystem
|Pa| Enabled Subsysteml
|Pa| Enabled Subsystem2 «
Ed Ensble
—
{1 i | Image output!.avi
Il
To Multimedia File
] 1 3 «
Ready 100% FixedStepDiscrete

Configuration Parameters

You can locate the Model Configuration Parameters by selecting Model
Configuration Parameters from the Simulation menu. For this example, the
parameters on the Solver pane, are set as follows:

* Type = Fixed-step
* Solver = Discrete (no continuous states)
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Combine Video and Audio Streams

In this example, you use the From Multimedia File blocks to import video and audio
streams into a Simulink model. You then write the audio and video to a single file using
the To Multimedia File block.

You can open the example model by typing at the MATLAB command line.
ex_combine video and audio streams

1 Run your model. The model creates a multimedia file called output.avi in your
current folder.

2 Play the multimedia file using a media player. The original video file now has an audio
component to it.

Setting Up the Video Input Block

The From Multimedia File block imports a video file into the model. During import, the
Inherit sample time from file check box is deselected, which enables the Desired
sample time parameter. The other default parameters are accepted.

The From Multimedia File block used for the input video file inherits its sample time from
the vipmen.avi file. For video signals, the sample time equals the frame period. The
frame period is defined as 1/(frame rate). Because the input video frame rate is 30 frames
per second (fps), the block sets the frame period to 1/30 or 0.0333 seconds per frame.

Setting Up the Audio Input Block

The From Multimedia Filel block imports an audio file into the model.

The Samples per audio channel parameter is set to 735. This output audio frame size is
calculated by dividing the frequency of the audio signal (22050 samples per second) by
the frame rate (approximately 30 frames per second).

You must adjust the audio signal frame period to match the frame period of the video
signal. The video frame period is 0.0333 seconds per frame. Because the frame period is
also defined as the frame size divided by frequency, you can calculate the frame period of
the audio signal by dividing the frame size of the audio signal (735 samples per frame) by
the frequency (22050 samples per second) to get 0.0333 seconds per frame.
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frame period = (frame size)/(frequency)
frame period = (735 samples per frame)/(22050 samples per second)
frame period = 0.0333 seconds per frame

Alternatively, you can verify that the frame period of the audio and video signals is the
same using a Simulink Probe block.

Setting Up the Output Block

The To Multimedia File block is used to output the audio and video signals to a single
multimedia file. The Video and audio option is selected for the Write parameter and

One multidimensional signal for the Image signal parameter. The other default
parameters are accepted.

Configuration Parameters

You can locate the Configuration Parameters by selecting Model Configuration
Parameters from the Simulation menu. The parameters, on the Solver pane, are set as
follows:

* Stop time = 10

* Type = Fixed-step

* Solver =Discrete (no continuous states)
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Import MATLAB Workspace Variables

You can import data from the MATLAB workspace using the Video From Workspace block,
which is created specifically for this task.

i =

Source Block Paramneters: Video From Workspace @
Video From Workspace (mask) (link)
Outputs video frames from the MATLAB workspace at successive
sample times.

If the video signal is a M-by-N-by-T workspace array, the block
outputs an intensity video signal, where M and N are the number of
rows and columns in a single video frame, and T is the number of
frames in the video signal.

If the video signal is a M-by-N-by-C-by-T workspace array, the block
outputs a color video signal, where M and M are the number of rows
and columns in a single video frame, C is the number of outputs from
the block, and T is the number of frames in the video stream.

Parameters
Signal:
rand{32,32,3,5)

Sample time:

1

Form output after final value by: [q.rclic repetition ']

Image signal: [Dne multidimensional signal ']

[ OK H Cancel H Help Apply
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Use the Signal parameter to specify the MATLAB workspace variable from which to read.
For more information about how to use this block, see the Video From Workspace block
reference page.
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Resample Image Chroma

In this example, you use the Chroma Resampling block to downsample the Cb and Cr
components of an image. The Y'CbCr color space separates the luma (Y') component of an
image from the chroma (Cb and Cr) components. Luma and chroma, which are calculated
using gamma corrected R, G, and B (R', G', B') signals, are different quantities than the
CIE chrominance and luminance. The human eye is more sensitive to changes in luma
than to changes in chroma. Therefore, you can reduce the bandwidth required for
transmission or storage of a signal by removing some of the color information. For this
reason, this color space is often used for digital encoding and transmission applications.

You can open the example model by typing at the MATLAB command line.

ex_vision resample image chroma

#4 ex_vision_resample_image_chroma o= ==
File Edit View Display Diagram Simulaion Analysis Code Tools Help
= ) = =Y FTErE— T Pii
-8 e Bme-B2 40P ® - wo Nernal 1 | @ | e -
ex_vision_resample_image_chroma
® |[Palex vision resample image chroma v
&
=
.
u Y
Seledor
—»R
1 Image —#| Imsge Psd I A A R via
v v G cb cp YCbrio —»G !
T B Cr b e 2.9 e
o imags Pad mm— aa410 42210 o . B
Color Space ~ 422 as
o o cr cr oy Vides Viewsr
Chroma Chroms Comersiant
Resampling Resampiing1
Selector?
»
Ready 100% FixedStepDiscrete

1 Define an RGB image in the MATLAB workspace. To do so, at the MATLAB command

prompt, type:

I= imread('autumn.tif');

This command reads in an RGB image from a TIF file. The image I is a 206-by-345-
by-3 array of 8-bit unsigned integer values. Each plane of this array represents the
red, green, or blue color values of the image.

2 To view the image this array represents, at the MATLAB command prompt, type:
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imshow(I)
3 Configure Simulink to display signal dimensions next to each signal line. Select
Display > Signals & Ports > Signal Dimensions.

4 Run your model. The recovered image appears in the Video Viewer window. The
Chroma Resampling block has downsampled the Cb and Cr components of an image.

5 Examine the signal dimensions in your model. The Chroma Resampling block
downsamples the Cb and Cr components of the image from 206-by-346 matrices to
206-by-173 matrices. These matrices require less bandwidth for transmission while
still communicating the information necessary to recover the image after it is
transmitted.

Setting Block Parameters for This Example

The block parameters in this example are modified from default values as follows:

Block Parameter
Image from Import your image from the MATLAB workspace. Set the Value
Workspace parameter to I.




Resample Image Chroma

Block

Parameter

Image Pad

Change dimensions of the input I array from 206-by-345-by-3 to
206-by-346-by-3. You are changing these dimensions because the
Chroma Resampling block requires that the dimensions of the
input be divisible by 2. Set the block parameters as follows:

* Method = Symmetric
* Add columns to = Right

*  Number of added columns = 1
* Add row to = No padding

The Image Pad block adds one column to the right of each plane of
the array by repeating its border values. This padding minimizes
the effect of the pixels outside the image on the processing of the
image.

Note When you process video streams, be aware that it is
computationally expensive to pad every video frame. You should
change the dimensions of the video stream before you process it
with Computer Vision Toolbox blocks.
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Block Parameter

Selector, Selectorl, |Separate the individual color planes from the main signal. Such
Slector2 separation simplifies the color space conversion section of the
model. Set the Selector block parameters as follows:

Selector

*  Number of input dimensions = 3

* Index 1 =Select all

* Index 2 = Select all

* Index 3 = Index vector (dialog) and Index =1

Selectorl

*  Number of input dimensions = 3

* Index 1 =Select all

* Index 2 = Select all

* Index 3 = Index vector (dialog) and Index = 2

Selector2

* Number of input dimensions = 3

* Index 1 =Select all

* Index 2 = Select all

* Index 3 = Index vector (dialog) and Index = 3

Color Space Convert the input values from the R'G'B' color space to the Y'CbCr
Conversion color space. The prime symbol indicates a gamma corrected signal.
Set the Image signal parameter to Separate color signals.

Chroma Resampling | Downsample the chroma components of the image from the 4:4:4
format to the 4:2:2 format. Use the default parameters. The
dimensions of the output of the Chroma Resampling block are
smaller than the dimensions of the input. Therefore, the output
signal requires less bandwidth for transmission.

Chroma Upsample the chroma components of the image from the 4:2:2
Resampling1 format to the 4:4:4 format. Set the Resampling parameter to
4:2:2 to 4:4:4.
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Block Parameter
Color Space Convert the input values from the Y'CbCr color space to the R'G'B'
Conversionl color space. Set the block parameters as follows:

* Conversion = Y'CbCr to R'G'B'
» Image signal = Separate color signals

Video Viewer

Display the recovered image. Select File>Image signal to set
Image signal to Separate color signals.

Configuration Parameters

Open the Configuration dialog box by selecting Model Configuration Parameters from
the Simulation menu. Set the parameters as follows:

* Stop time = 10

+ Type = Fixed-step
* Solver =Discrete (no continuous states)
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Binary images contain Boolean pixel values that are either 0 or 1. Pixels with the value 0
are displayed as black; pixels with the value 1 are displayed as white. Intensity images
contain pixel values that range between the minimum and maximum values supported by
their data type. Binary images can contain only Os and 1s, but they are not binary images
unless their data type is Boolean.

Thresholding Intensity Images Using Relational Operators

You can use the Relational Operator block to perform a thresholding operation that
converts your intensity image to a binary image. This example shows you how to
accomplish this task.

You can open the example model by typing at the MATLAB command line.
ex_vision thresholding intensity

1 You can create a new Simulink model and add the blocks shown in the table.

Block Library Quantity

Image From File Computer Vision Toolbox > Sources |1

Video Viewer Computer Vision Toolbox > Sinks 2

Relational Operator Simulink > Logic and Bit 1
Operations

Constant Simulink > Sources 1

2 Use the Image from File block to import your image. In this example the image file is
a 256-by-256 matrix of 8-bit unsigned integer values that range from 0 to 255. Set the
File name parameter to rice.png

3  Use the Video Viewer1 block to view the original intensity image. Accept the default
parameters.

4  Use the Constant block to define a threshold value for the Relational Operator block.
Since the pixel values range from 0 to 255, set the Constant value parameter to
128. This value is image dependent.

5 Use the Relational Operator block to perform a thresholding operation that converts
your intensity image to a binary image. Set the Relational Operator parameter to >.
If the input to the Relational Operator block is greater than 128, its output is a
Boolean 1; otherwise, its output is a Boolean 0.


matlab:ex_vision_thresholding_intensity

Convert Intensity Images to Binary Images

6 Use the Video Viewer block to view the binary image. Accept the default parameters.
7  Connect the blocks as shown in the following figure.
'P'i ex_vision_thresholding_intensity E@
File Edit View Display Diagram Sirulation  Analysis  Code  Tools  Help
= (S]] = ol { it
-8 = e -2 4P OBl » (Y v @ v
| ex_vision_thresholding_intensity
= |E|ex_visiDn_thresholding_intensit}r b
(O]
EZ
— rice.png Image > - »|image ;:ﬂ::'
Image From File Relfons|Cperstar
Video Viewsr
128
Constant
| Image ::j::[
Video Viewer 1
]
Ready 100% FixedStepDiscrete
8 Set the configuration parameters. Open the Configuration dialog box by selecting

Simulation > Model Configuration Parameters menu. Set the parameters as
follows:

* Solver pane, Stop time = 0
* Solver pane, Type = Fixed-step
* Solver pane, Solver = discrete (no continuous states)
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9

Run your model.

The original intensity image appears in the Video Viewerl window.

B Video Viewerl = [ | (]

File Tools View Simulation Help N
&R OB %S oo -

@b ®| @

Ready |:256x256 T=0.000

The binary image appears in the Video Viewer window.




Convert Intensity Images to Binary Images

=

1l.n"in::h.=-_|:h‘l.n’iva1.-'a.rner E@

File Tools View Simulation Help o
= ROk %S & 0% -
O M p=c

Ready |l:256x256 T=0.000

Note A single threshold value was unable to effectively threshold this image due to

its uneven lighting. For information on how to address this problem, see “Correct
Nonuniform Illumination” on page 11-2.

You have used the Relational Operator block to convert an intensity image to a binary
image. For more information about this block, see the Relational Operator block reference

page. For additional information, see “Convert Between Image Types” (Image Processing
Toolbox).
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Thresholding Intensity Images Using the Autothreshold Block

In the previous topic, you used the Relational Operator block to convert an intensity
image into a binary image. In this topic, you use the Autothreshold block to accomplish
the same task. Use the Autothreshold block when lighting conditions vary and the
threshold needs to change for each video frame.

Note Running this example requires a DSP System Toolbox™ license.

ex_vision autothreshold

1 If the model you created in “Thresholding Intensity Images Using Relational
Operators” on page 4-24 is not open on your desktop, you can open the model by
typing

ex_vision thresholding intensity

at the MATLAB command prompt.


matlab:ex_vision_autothreshold
matlab:ex_vision_thresholding_intensity

Convert Intensity Images to Binary Images

e

'p'i ex_vision_thresholding_intensity
File Edit View Display Diagram

Simulation  Analysis Code Tools

-8 S Bme-E 4® b

| ex_vision_thresholding_intensity

Help

i\!/lv[) »@vlﬁjv

#® |[*a|ex_vision_thresholding_intensity -
rice.png Image » Vides
= = | Image .
Relational & It
Image From File netpsatar
Video Viewer
128
Constant
Video
| Image Vi
Video Viewsr 1
p >
Ready 100% FixedStepDiscrete

2 Use the Image from File block to import your image. In this example the image file is
a 256-by-256 matrix of 8-bit unsigned integer values that range from 0 to 255. Set the
File name parameter to rice.png

3 Delete the Constant and the Relational Operator blocks in this model.

Add an Autothreshold block from the Conversions library of the Computer Vision

Toolbox into your model.

5 Use the Autothreshold block to perform a thresholding operation that converts your
intensity image to a binary image. Select the Output threshold check box. This
block outputs the calculated threshold value at the Th port.
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6 Add a Display block from the Sinks library of the DSP System Toolbox library.
Connect the Display block to the Th output port of the Authothreshold block.

Your model should look similar to the following figure:

o

'F"ﬁ ex_vision_autothreshold E@

File Edit View Display Diagram Simulation Analysis Code Tools Help

-8 2 w82 40P » (D - -

| ex_vision_autothreshold |

® ||Paex_vision_autothreshold hd
=% BW = Image V.Ide{}
Viewer
rice.png Image | Autothreshold
ThE—
Video Viewer
Image From File Autcthres hold
»{Image Video
19 Viewer 1
Display
Video Viewer 1
o
Ready 100% FixedStepDiscrete

7 Ifyou have not already done so, set the configuration parameters. Open the
Configuration dialog box by selecting Model Configuration Parameters from the
Simulation menu. Set the parameters as follows:
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* Solver pane, Stop time = 0
* Solver pane, Type = Fixed-step
* Solver pane, Solver = discrete (no continuous states)

8 Run the model.

The original intensity image appears in the Video Viewerl window.

B Video Viewerl = [ | (]

File Tools View Simulation Help N
= RO = S| 0% -
@b ®| @

Ready |-256x256 T=0.000

The binary image appears in the Video Viewer window.
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B Video Viewer = -2 5]
N

File Tools View Simulation Help

= || @Ry | % S & | Ed|0% -

ON= @ ==

Ready |: 256256 T=0.000

In the model window, the Display block shows the threshold value, calculated by the
Autothreshold block, that separated the rice grains from the background.
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=] doc_autothreshold =10l x|

File Edit View Simulation Format Tools Help

D|ﬁﬂ%|éﬁﬁ|<ﬁ==ﬁ{r|ﬂﬁ PIIE IN-::rmaI j|
EW ——m Image ) :';I:.f:
rice.png Image I | Autothresheold e
Th —
Video Views
Imags From Fils Autothresheld
Video
—|lmage » 121
Display
Video Viewer1
Ready [100 % | | [FixedStepDiscrete

You have used the Autothreshold block to convert an intensity image to a binary image.
For more information about this block, see the Autothreshold block reference page in the
Computer Vision Toolbox Reference. To open an example model that uses this block, type
vipstaples at the MATLAB command prompt.
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Convert R'G'B' to Intensity Images

The Color Space Conversion block enables you to convert color information from the
R'G'B' color space to the Y'CbCr color space and from the Y'CbCr color space to the
R'G'B' color space as specified by Recommendation ITU-R BT.601-5. This block can also
be used to convert from the R'G'B' color space to intensity. The prime notation indicates
that the signals are gamma corrected.

Some image processing algorithms are customized for intensity images. If you want to
use one of these algorithms, you must first convert your image to intensity. In this topic,
you learn how to use the Color Space Conversion block to accomplish this task. You can
use this procedure to convert any R'G'B' image to an intensity image:

ex_vision convert rgb

1 Define an R'G'B' image in the MATLAB workspace. To read in an R'G'B' image from a
JPG file, at the MATLAB command prompt, type

I= imread('greens.jpg');

I is a 300-by-500-by-3 array of 8-bit unsigned integer values. Each plane of this array
represents the red, green, or blue color values of the image.

2 To view the image this matrix represents, at the MATLAB command prompt, type

imshow(I)
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Convert R'G'B' to Intensity Images

B Figure: =R

File Edit View Insert Tools Desktop Window Help o
Odde b ARKRODEA- S| 0| 0l

an’

Create a new Simulink model, and add to it the blocks shown in the following table.

Block Library Quantity

Image From Workspace |Computer Vision Toolbox > Sources |1

Color Space Conversion |Computer Vision Toolbox > 1
Conversions

Video Viewer Computer Vision Toolbox > Sinks 2

Use the Image from Workspace block to import your image from the MATLAB
workspace. Set theValue parameter to I.

Use the Color Space Conversion block to convert the input values from the R'G'B'
color space to intensity. Set the Conversion parameter to R'G'B' to intensity.

View the modified image using the Video Viewer block. View the original image using
the Video Viewerl block. Accept the default parameters.
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7

Connect the blocks so that your model is similar to the following figure.

i

'D'i ex_vision_convert_rgb
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File Edit View Display Diagram Simulation Analysis Code Tools Help
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]
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Video Viewer1
»
Ready 100% FixedStepDiscrete
8 Set the configuration parameters. Open the Configuration dialog box by selecting

Model Configuration Parameters from the Simulation menu. Set the parameters

as follows:

* Solver pane, Stop time = 0

* Solver pane, Type = Fixed-step

* Solver pane, Solver = Discrete (no continuous states)

9 Run your model.




Convert R'G'B' to Intensity Images

The image displayed in the Video Viewer window is the intensity version of the

greens.jpg image.

o

u Video Viewer
File Tools

= (i Q0
® kb ®| @

Wiew

Simulation Help

®, G & | T 100%

Ready

[:300x500 [T=0.000

In this topic, you used the Color Space Conversion block to convert color information
from the R'G'B' color space to intensity. For more information on this block, see the Color
Space Conversion block reference page.
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Process Multidimensional Color Video Signals

The Computer Vision Toolbox software enables you to work with color images and video
signals as multidimensional arrays. For example, the following model passes a color
image from a source block to a sink block using a 384-by-512-by-3 array.

ex _vision process multidimensional

J"ﬁ ex_vision_process_multidimensional EI@
File Edit View Display Diagram Simulation Analysis Code Tools Help
[H [ el i
Eﬂv@ ED@' %'@HD‘ -\E)v»(‘:{,\]vt_.lv
| ex_vision_process_multidimensional |
® |[*a|ex_vision_process_multidimensional b
]
E3
—
- Video
pPEpRErs. png Image | Image Viewsr
Image From File Video Viewer
b
Ready 100% FixedStepDiscrete
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Process Multidimensional Color Video Signals

-

B Video Viewer [ - ]

File Tools View Simulation Help o
= R O %S| o -
X e

Ready [RGB:384x512 [T=0.000

You can choose to process the image as a multidimensional array by setting the Image

signal parameter to One multidimensional signal in the Image From File block
dialog box.

The blocks that support multidimensional arrays meet at least one of the following
criteria:
* They have the Image signal parameter on their block mask.

* They have a note in their block reference pages that says, “This block supports
intensity and color images on its ports.”

* Their input and output ports are labeled “Image”.
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You can also choose to work with the individual color planes of images or video signals.
For example, the following model passes a color image from a source block to a sink block

using three separate color planes.

ex_vision process individual

*ﬁ ex_vision_process_individual EI@
File Edit WView Display Diagram Simulation Analysis Code Tools Help
)] = "l +id
-8 &= @2 4o b ORISRl
| ex_vision_process_jindividual |
® ex_vision_process_individuaI -
E3l
—_=%
R R
.| Videa
pEppErs.png G > Viewsr
B B
Image From File Video Viewer
b
Ready 100% FixedStepDiscrete
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Process Multidimensional Color Video Signals

- 1

B Video Viewer [ - ]

File Tools View Simulation Help o
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X ICE

Ready [RGB:384x512 [T=0.000

To process the individual color planes of an image or video signal, set the Image signal
parameter to Separate color signals in both the Image From File and Video Viewer
block dialog boxes.
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J Video Viewerl

File Tools view Playback Help

v Open ak Start of Simulation I 100%% - |
Image Signal One Mulki-Dimensional Signal

Configuration Set b Separate Color Signals
Expart to Image Toal Chrl+E

Close Chrl+W

Close all

Note The ability to output separate color signals is a legacy option. It is recommend that
you use multidimensional signals to represent color data.

If you are working with a block that only outputs multidimensional arrays, you can use
the Selector block to separate the color planes. If you are working with a block that only
accepts multidimensional arrays, you can use the Matrix Concatenation block to create a
multidimensional array.



Video Formats

Video Formats

Defining Intensity and Color

Video data is a series of images over time. Video in binary or intensity format is a series of
single images. Video in RGB format is a series of matrices grouped into sets of three,
where each matrix represents an R, G, or B plane.

The values in a binary, intensity, or RGB image can be different data types. The data type
of the image values determines which values correspond to black and white as well as the
absence or saturation of color. The following table summarizes the interpretation of the
upper and lower bound of each data type. To view the data types of the signals at each
port, from the Display menu, point to Signals & Ports, and select Port Data Types.

Data Type Black or Absence of Color White or Saturation of Color
Fixed point Minimum data type value Maximum data type value
Floating point 0 1

Note The Computer Vision Toolbox software considers any data type other than double-
precision floating point and single-precision floating point to be fixed point.

For example, for an intensity image whose image values are 8-bit unsigned integers, 0 is
black and 255 is white. For an intensity image whose image values are double-precision
floating point, 0 is black and 1 is white. For an intensity image whose image values are
16-bit signed integers, -32768 is black and 32767 is white.

For an RGB image whose image values are 8-bit unsigned integers, 0 0 0 is black,

255 255 255 is white, 255 0 0 is red, 0 255 0 is green, and 0 0 255 is blue. For an RGB
image whose image values are double-precision floating point, 0 0 0 is black, 11 1 is
white, 1 0 O isred, 0 1 0 is green, and 0 0 1 is blue. For an RGB image whose image
values are 16-bit signed integers, -32768 -32768 -32768 is black, 32767 32767 32767 is
white, 32767 -32768 -32768 is red, -32768 32767 -32768 is green, and

-32768 -32768 32767 is blue.
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Video Data Stored in Column-Major Format

The MATLAB technical computing software and Computer Vision Toolbox blocks use
column-major data organization. The blocks' data buffers store data elements from the
first column first, then data elements from the second column second, and so on through
the last column.

If you have imported an image or a video stream into the MATLAB workspace using a
function from the MATLAB environment or the Image Processing Toolbox, the Computer
Vision Toolbox blocks will display this image or video stream correctly. If you have written
your own function or code to import images into the MATLAB environment, you must take
the column-major convention into account.



Image Formats

Image Formats

In the Computer Vision Toolbox software, images are real-valued ordered sets of color or
intensity data. The blocks interpret input matrices as images, where each element of the
matrix corresponds to a single pixel in the displayed image. Images can be binary,
intensity (grayscale), or RGB. This section explains how to represent these types of
images.

Binary Images

Binary images are represented by a Boolean matrix of Os and 1s, which correspond to
black and white pixels, respectively.

For more information, see “Binary Images” (Image Processing Toolbox).

Intensity Images

Intensity images are represented by a matrix of intensity values. While intensity images
are not stored with colormaps, you can use a gray colormap to display them.

For more information, see “Grayscale Images” (Image Processing Toolbox).

RGB Images

RGB images are also known as a true-color images. With Computer Vision Toolbox blocks,
these images are represented by an array, where the first plane represents the red pixel
intensities, the second plane represents the green pixel intensities, and the third plane
represents the blue pixel intensities. In the Computer Vision Toolbox software, you can
pass RGB images between blocks as three separate color planes or as one
multidimensional array.

For more information, see “Truecolor Images” (Image Processing Toolbox).
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Display, Stream, and Preview Videos

5-2

In this section...

“View Streaming Video in MATLAB” on page 5-2
“Preview Video in MATLAB” on page 5-2
“View Video in Simulink” on page 5-3

View Streaming Video in MATLAB

Basic Video Streaming

Use the video player vision.VideoPlayer System object when you require a simple
video display in MATLAB for streaming video.

Code Generation Supported Video Streaming Object

Use the deployable video player vision.DeployableVideoPlayer System object as a
basic display viewer designed for optimal performance. This object supports code
generation on all platforms.

Preview Video in MATLAB

Use the Image Processing Toolbox implay function to view and represent videos as
variables in the MATLAB workspace. It is a full featured video player with toolbar
controls. The implay player enables you to view videos directly from files without having
to load all the video data into memory at once.

You can open several instances of the implay function simultaneously to view multiple
video data sources at once. You can also dock these implay players in the MATLAB
desktop. Use the figure arrangement buttons in the upper-right corner of the Sinks
window to control the placement of the docked players.
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View Video in Simulink
Code Generation Supported Video Streaming Block

Use the To Video Display block in your Simulink model as a simple display viewer
designed for optimal performance. This block supports code generation for the Windows
platform.

Simulation Control and Video Analysis Block

Use the Video Viewer block when you require a wired-in video display with simulation
controls in your Simulink model. The Video Viewer block provides simulation control
buttons directly from the player interface. The block integrates play, pause, and step
features while running the model and also provides video analysis tools such as pixel
region viewer.

View Video Signals Without Adding Blocks

The implay function enables you to view video signals in Simulink models without adding
blocks to your model. You can open several instances of the implay player
simultaneously to view multiple video data sources at once. You can also dock these
players in the MATLAB desktop. Use the figure arrangement buttons in the upper-right
corner of the Sinks window to control the placement of the docked players.

Set Simulink simulation mode to Normal to use implay. implay does not work when you
use “Accelerating Simulink Models” on page 13-9.

Example 5.1. Use implay to view a Simulink signal:

Open a Simulink model.

Open an implay player by typing implay on the MATLAB command line.
Run the Simulink model.

Select the signal line you want to view.

ga A W N =

5

On the implay toolbar, select File > Connect to Simulink Signal or click the
icon.

The video appears in the player window.
6 You can use multiple implay players to display different Simulink signals.
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Note During code generation, the Simulink Coder™ does not generate code for the
implay player.




Annotate Video Files with Frame Numbers

Annotate Video Files with Frame Numbers

You can use the insertText function in MATLAB, or thelnsert Text block in a Simulink
model, to overlay text on video streams. In this Simulink model example, you add a
running count of the number of video frames to a video using the Insert Text block. The
model contains the From Multimedia File block to import the video into the Simulink
model, a Frame Counter block to count the number of frames in the input video, and two
Video Viewer blocks to view the original and annotated videos.

You can open the example model by typing at the MATLAB command line.
ex_vision annotate video file with frame numbers

1  Run your model.
2 The model displays the original and annotated videos.
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¥

n Video Viewer

File Tools View Simulation Help
=] O E: | 5 = | E 00%
®r@ i

Ready

[-120x160

T=25.000

Color Formatting

For this example, the color format for the video was set to Intensity, and therefore the
color value for the text was set to a scaled value. If instead, you set the color format to
RGB, then the text value must satisfy this format, and requires a 3-element vector.

Inserting Text

Use the Insert Text block to annotate the video stream with a running frame count. Set

the block parameters as follows:

* Main pane, Text = [ 'Frame count' sprintf('\n')

'Source frame: %d']



Annotate Video Files with Frame Numbers

* Main pane, Color value = 1
* Main pane, Location [x y] = [85 2]
* Font pane, Font face = LucindaTypewriterRegular

By setting the Text parameter to [ ' Frame count' sprintf('\n') 'Source frame:
%d '], you are asking the block to print Frame count on one line and the Source
frame: on a new line. Because you specified %d, an ANSI C printf-style format
specification, the Variables port appears on the block. The block takes the port input in
decimal form and substitutes this input for the %d in the character vector. You used the
Location [x y] parameter to specify where to print the text. In this case, the location is
85 rows down and 2 columns over from the top-left corner of the image.

Configuration Parameters

Set the configuration parameters. Open the Configuration dialog box by selecting Model
Configuration Parameters from the Simulation menu. Set the parameters as follows:

* Solver pane, Stop time = inf
* Solver pane, Type = Fixed-step
* Solver pane, Solver = Discrete (no continuous states)
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Draw Shapes and Lines

When you specify the type of shape to draw, you must also specify it’s location on the
image. The table shows the format for the points input for the different shapes.

Rectangle

Shape PTS input Drawn Shape

Single Rectangle Four-element row vector
[Xx y width height] where

(x.y)

* X and y are the one-based coordinates of
the upper-left corner of the rectangle.

* width and height are the width, in
pixels, and height, in pixels, of the
rectangle. The values of width and
height must be greater than 0.

(x + width-1, y + height-1)

M Rectangles M-by-4 matrix -
X1 Y1 widthy heighty (x1,y1)

Xy yp widthy height,

Xp Ym widthy heightyy (x1 + widths-1, y1 + heights-1)

(xy)

where each row of the matrix corresponds
to a different rectangle and is of the same
form as the vector for a single rectangle.

A

(xz + widthz-1, y2 + height2-1)

Line and Polyline

You can draw one or more lines, and one or more polylines. A polyline contains a series of
connected line segments.



Draw Shapes and Lines

Shape

PTS input

Drawn Shape

Single Line

Four-element row vector [X; y; X» V>l

where (x1.y1)
* X; and y; are the coordinates of the \x; v2)
beginning of the line.
* X, and Yy, are the coordinates of the end
of the line.
M Lines M-by-4 matrix (x11, y11)
X X
11 Y11 X12 Y12 \(u yr2)
X X
%1 _V?l ?2 QV?Z )(m ym
XpM1 YM1 XM2 YM2 /
where each row of the matrix corresponds (xuz, yuz)
to a different line and is of the same form as
the vector for a single line.
Single Polyline with |Vector of size 2L, where L is the number of (Xe, ye)
(L-1) Segments vertices, with format, [X;, yi, X5, {x
Y2, «r XLy yL] LV
* x; and y; are the coordinates of the
beginning of the first line segment.
* X, and y, are the coordinates of the end (x1. y1)
of the first line segment and the
beginning of the second line segment. . y3)
« x, and y; are the coordinates of the end | (X2 Y2)

of the (L-1) line segment.

The polyline always contains (L-1) number
of segments because the first and last
vertex points do not connect. The block
produces an error message when the
number of rows is less than two or not a
multiple of two.
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Shape PTS input Drawn Shape
M Polylines with 2L-by-N matrix M=3, L6
(L-1) Segments _— ey
X11 Y11 X12 Yiz2 XL ViL o
X21 Y21 X22 Y22 v XoL VoL
. . . . (x11, y11)
XM1 YM1 XmM2 YMm2 - XML YML (27 (x13. y13)
where each row of the matrix corresponds (10 yoe) = (o o) 5908 L5 matie
to a different polyline and is of the same ' T e eause s
form as the vector for a single polyline. P oot
When you require one polyline to contain (xer. ya1) (xz5, y23) seamens.
less than (L-1) number of segments, fill the (x22. 70
matrix by repeating the coordinates of the
last vertex. oy (e, yiea)

The block produces an error message if the
number of rows is less than two or not a
multiple of two.

(X2, ymz)
(w1, ym1)

(xus, ymsz)

Polygon

You can draw one or more polygons.
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Shape

PTS input

Drawn Shape

Single Polygon with
L line segments

Row vector of size 2L, where L is the
number of vertices, with format, [x; y; X,
Yo ... X_ Y] where

* x; and y; are the coordinates of the
beginning of the first line segment.

* X, and y, are the coordinates of the end
of the first line segment and the
beginning of the second line segment.

* x; and yy, are the coordinates of the end
of the (L-1)' line segment and the
beginning of the L' line segment.

The block connects [x; y;] to [x. y.] to
complete the polygon. The block produces
an error if the number of rows is negative
or not a multiple of two.

L=5

(e, y2)
(XL, yu)
(%1, y1)
(%3, y3)

(X2, y2)

M Polygons with the
largest number of
line segments in any
line being L

M-by-2L matrix

X1L ViL
XL V2L

X11 Y11 X12 yi2 -
X21 Y21 X22 Y22 -

XM1 Ym1 XM2 Ym2 - XML VML

where each row of the matrix corresponds
to a different polygon and is of the same
form as the vector for a single polygon. If
some polygons are shorter than others,
repeat the ending coordinates to fill the
polygon matrix.

The block produces an error message if the
number of rows is less than two or is not a
multiple of two.

M=3, L=56
X14, Y4

( )
(XL, yiL
(x11, y1)
()(12. y12) (KB y13)

*Added L=5 matrix
entry equal to L=4
value, because this
polyline contains one
less number of
segments

(%21, y21)

(%24, y2¢) = (xz5, y2s)
(xs. y=3)
(xz2, y22)

(XmL, e (e, yie)

)
(12, yuz) (xuz, yu3)
(xm1, ym1)
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Circle

You can draw one or more circles.

Shape

PTS input

Drawn Shape

Single Circle

Three-element row vector
[x y radius] where

* xand y are coordinates for the center of
the circle.

¢ radius is the radius of the circle, which
must be greater than 0.

M Circles

M-by-3 matrix
X1 yp radius;
X9 yp radiusy
XM VM radiusM

where each row of the matrix corresponds
to a different circle and is of the same form
as the vector for a single circle.

(x,y1)

(x2,y2)

See Also

Insert Text | insertMarker | insertObjectAnnotation | insertShape
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» “Detect Edges in Images” on page 6-2

* “Detect Lines in Images” on page 6-9

* “Fisheye Calibration Basics” on page 6-13

* “Single Camera Calibrator App” on page 6-21
* “Stereo Camera Calibrator App” on page 6-43
* “What Is Camera Calibration?” on page 6-62

* “Structure from Motion” on page 6-69



6 Registration and Stereo Vision

Detect Edges in Images

This example shows how to find the edges of rice grains in an intensity image. It finds the
pixel locations where the magnitude of the gradient of intensity exceeds a threshold
value. These locations typically occur at the boundaries of objects.

Open the Simulink model.

ex _vision detect edges in_image

Video

Image ..
T Viewer

Video Viewer

Video

Edge Viewer

¥

Image

rice.png Image ‘ - Sobel Gv b—

Gh— Video Viewer1

¥

Image From File Edge Detecticn —|_’
\_y P "
+ l Image Video

I Val . Viewer

Divide

2-D Minimum Video Viewser 2

Lb+ x Image Video
- I val ——»{+ 9% Viewsr

> I\m L
Subtracti

Divide1

2-D Mazamumd

2-D Minirmum 1 Video Viewer 3
Set block parameters.
Block Parameter setting
Image From File * File name to rice.png.
*  Output data type to single.
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Detect Edges in Images

Block

Parameter setting

Edge Detection

Use the Edge Detection block to find the
edges in the image.

* Output type = Binary image and
gradient components

* Select the Edge thinning check box.

Video Viewer and Video Viewerl

View the original and binary images. Accept
the default parameters for both viewers.

2-D Minimum and 2-D Minimum1

Find the minimum value of Gv and Gh
matrices. Set the Mode parameters to
Va'lue for both of these blocks.

Subtract and Subtract1

Subtract the minimum values from each
element of the Gv and Gh matrices. This
process ensures that the minimum value of
these matrices is 0. Accept the default
parameters.

2-D Maximum and 2-D Maximum1

Find the maximum value of the new Gv and
Gh matrices. Set the Mode parameters to
Value for both of these blocks.

Divide and Dividel

Divide each element of the Gv and Gh
matrices by their maximum value. This
normalization process ensures that these
matrices range between 0 and 1. Accept
the default parameters.

Video Viewer2 and Video Viewer3

View the gradient components of the image.
Accept the default parameters.

Set configuration parameters.

Open the Configuration dialog box by selecting Model Configuration Parameters from
the Simulation menu. The parameters are set as follows:

* Solver pane, Stop time = 0

* Solver pane, Type = Fixed-step

* Solver pane, Solver = Discrete (no continuous states)
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* Diagnostics pane, Automatic solver parameter selection: = none
Run your model and view edge detection results.

The Video Viewer window displays the original image.

’ B video Viewer BN EER (> ﬁ

File Tools View Simulation Help o
S 0| 08| %X 7| Ehox -
®Pr® @

Ready [:256x256 [T=10.000

The Video Viewerl window displays the edges of the rice grains in white and the
background in black.



Detect Edges in Images

I )

"'} Video Viewerl — =]
.
|

File Tools View Simulation Help

= | | OB | & S| 0% -

& 0> [ TieCa

Ready l:256x256 T=10.000

The Video Viewer2 window displays the intensity image of the vertical gradient
components of the image. You can see that the vertical edges of the rice grains are darker
and more well defined than the horizontal edges.
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1Y Video Viewer2 =y ==

File Tools View Simulation Help »
S| ' O RS | Cwex -
ORI M=

Ready [r256x256 [T=10.00

The Video Viewer3 window displays the intensity image of the horizontal gradient
components of the image. In this image, the horizontal edges of the rice grains are more
well defined.
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B video Viewer [ - ]

File Tools View Simulation Help o
= B Q| R S| B -
X e

Ready |I-256x256 [T=10.000

The Edge Detection block convolves the input matrix with the Sobel kernel. This
calculates the gradient components of the image that correspond to the horizontal and
vertical edge responses. The block outputs these components at the Gh and Gv ports,
respectively. Then the block performs a thresholding operation on the gradient
components to find the binary image. The binary image is a matrix filled with 1s and 0s.
The nonzero elements of this matrix correspond to the edge pixels and the zero elements
correspond to the background pixels. The block outputs the binary image at the Edge
port.

The matrix values at the Gv and Gh output ports of the Edge Detection block are double-
precision floating-point. These matrix values need to be scaled between 0 and 1 in order
to display them using the Video Viewer blocks. This is done with the Statistics and Math

Operation blocks.
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Run the model faster by double-clicking the Edge Detection block and clear the Edge
thinning check box.

Your model runs faster because the Edge Detection block is more efficient when you clear
the Edge thinning check box. However, the edges of rice grains in the Video Viewer
window are wider.

Video Viewerl = [ (]

File Tools View Simulation Help ™

= | | O e | ® S| 0% -

ON= @ =+

Ready l: 256x256 T=10.000

Close the model.

bdclose('ex vision detect edges in image');
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Detect Lines in Images

This example shows you how to find lines within images and enables you to detect,
measure, and recognize objects. You use the Hough Transform, Find Local Maxima, Edge

Detectionand Hough Lines blocks to find the longest line in an image.

You can open the example model by typing at the MATLAB command line.

ex _vision detect lines

i

n Video Viewer

File Tools View Simulation Help

= o %, & 4 | £ |100%
®k® @

Ready

[1:280x272

[T=0.000

The Video Viewer blocks display the original image, the image with all edges found, and

the image with the longest line annotated.
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The Edge Detection block finds the edges in the intensity image. This process improves
the efficiency of the Hough Lines block by reducing the image area over which the block
searches for lines. The block also converts the image to a binary image, which is the
required input for the Hough Transform block.

For additional examples of the techniques used in this section, see the following list of
examples. You can open these examples by typing the title at the MATLAB command

prompt:

Example

MATLAB

Simulink model-based

Rotation Correction

videorotationcorrecti [viphough

on

Setting Block Parameters

Block

Parameter setting

Hough Transform

The Hough Transform block computes the
Hough matrix by transforming the input
image into the rho-theta parameter space.
The block also outputs the rho and theta
values associated with the Hough matrix.
The parameters are set as follows:

* Theta resolution (radians) = pi/360

¢ Select the Output theta and rho
values check box.

Find Local Maxima

The Find Local Maxima block finds the
location of the maximum value in the
Hough matrix. The block parameters are
set as follows:

¢ Maximum number of local maxima =
1

* Input is Hough matrix spanning full
theta range



matlab:showdemo videorotationcorrection
matlab:showdemo videorotationcorrection
matlab:showdemo viphough

Detect Lines in Images

Block

Parameter setting

Selector, Selectorl

The Selector blocks separate the indices of
the rho and theta values, which the Find
Local Maxima block outputs at the Idx port.
The rho and theta values correspond to the
maximum value in the Hough matrix. The
Selector blocks parameters are set as
follows:

*  Number of input dimensions: 1

¢ Index mode = One-based

* Index Option = Index vector
(port)

e Input port size = 2

Selector2, Selector3

The Selector blocks index into the rho and
theta vectors and determine the rho and
theta values that correspond to the longest
line in the original image. The parameters
of the Selector blocks are set as follows:

*  Number of input dimensions: 2

¢ Index mode = One-based

* Index Option = Index vector
(port)

Hough Lines

The Hough Lines block determines where
the longest line intersects the edges of the
original image.

* Sine value computation method =
Trigonometric function
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Block Parameter setting

Draw Shapes The Draw Shapes block draws a white line
over the longest line on the original image.
The coordinates are set to superimpose a
line on the original image. The block
parameters are set as follows:

e Shape = Lines

* Border color = White

Configuration Parameters

Set the configuration parameters. Open the Configuration dialog box by selecting Model
Configuration Parameters from the Simulation menu. Set the parameters as follows:
* Solver pane, Stop time = 0

* Solver pane, Type = Fixed-step

* Solver pane, Solver = Discrete (no continuous states)

* Solver pane, Fixed-step size (fundamental sample time): = 0.2
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Fisheye Calibration Basics

Camera calibration is the process of computing the extrinsic and intrinsic parameters of a
camera. Once you calibrate a camera, you can use the image information to recover 3-D
information from 2-D images. You can also undistort images taken with a fisheye camera.

Fisheye cameras are used in odometry and to solve the simultaneous localization and
mapping (SLAM) problems visually. Other applications include, surveillance systems,
GoPro, virtual reality (VR) to capture 360 degree field of view (fov), and stitching
algorithms. These cameras use a complex series of lenses to enlarge the camera's field of
view, enabling it to capture wide panoramic or hemispherical images. However, the lenses
achieve this extremely wide angle view by distorting the lines of perspective in the
images

Fisheye image Undistorted fisheye image

Because of the extreme distortion a fisheye lens produces, the pinhole model cannot
model a fisheye camera.
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Pinhole

Fisheye Camera Model

The Computer Vision Toolbox calibration algorithm uses the fisheye camera model
proposed by Scaramuzza[1]. You can use this model with cameras up to a field of view
(FOV) of 150 degrees. The model uses an omnidirectional camera model. The process
treats the imaging system as a compact system. In order to relate a 3-D world point on to
a 2-D image, you must obtain the camera extrinsic and intrinsic parameters. World points
are transformed to camera coordinates using the extrinsics parameters. The camera
coordinates are mapped into the image plane using the intrinsics parameters.

Camera Pixel
coordinates coordinates

Extrinsic parameters Intrinsic parameters
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Extrinsic Parameters

The extrinsic parameters consist of a rotation, R, and a translation, t. The origin of the
camera's coordinate system is at its optical center and its x- and y-axis define the image

plane.

-
“

ﬂ

The transformation from world points to camera points is:

Xc Xw

Yc = Rl Yw +T
7c | *Zw

L i
Rotation Translation
s Sl Yo

Camena points World points
Intrinsic Parameters

For the fisheye camera model, the intrinsic parameters include the polynomial mapping
coefficients of the projection function. The alignment coefficients are related to sensor
alignment and the transformation from the sensor plane to a pixel location in the camera
image plane.

The following equation maps an image point into its corresponding 3-D vector.
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X. u
Y =4 v
Z, ay+a,pt+a,pP+a,p

(u,v) are the ideal image projections of the real-world points.
represents a scalar factor.
A t lar fact
a,,a,,a,,d, . ' .
are polynomial coefficents described by the Scaramuzza model, where
a, =0
P is a function of (u,v) and depends only on the distance of a point from the image

=u’+v?

The intrinsic parameters also account for stretching and distortion. The stretch matrix
compensates for the sensor-to-lens misalignment, and the distortion vector adjusts the
(0,0) location of the image plane.

center: P

-

/_\ (u"v")
| f{}:_.c'fl"] [{:{J ] w !
(u,v) N (uv’)

v Y

Stratch Shift

The following equation relates the real distorted coordinates (u",v") to the ideal distorted
coordinates (u,v).
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T c difu C,
o = +
v e 1/lv C,
Image pixels T T Distortion center

Stretch  Hypothetical
matrix  image plane

Fisheye Camera Calibration in MATLAB

To remove lens distortion from a fisheye image, you can detect a checkerboard calibration
pattern and then calibrate the camera. You can find the checkerboard points using the
detectCheckerboardPoints and generateCheckerboardPoints functions. The
estimateFisheyeParameters function uses the detected points and returns the
fisheyeParameters object that contains the intrinsic and extrinsic parameters of a
fisheye camera. You can use the fisheyeCalibrationErrors to check the accuracy of
the calibration.

Correct Fisheye Image for Lens Distortion

Remove lens distortion from a fisheye image by detecting a checkboard calibration
pattern and calibrating the camera. Then, display the results.

Gather a set of checkerboard calibration images.

images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata',
'calibration', 'gopro'));

Detect the calibration pattern from the images.
[imagePoints,boardSize] = detectCheckerboardPoints(images.Files);

Generate world coordinates for the corners of the checkerboard squares.

squareSize = 29; % millimeters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Estimate the fisheye camera calibration parameters based on the image and world points.
Use the first image to get the image size.
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I = readimage(images,1);
imageSize = [size(I,1) size(I,2)];
params = estimateFisheyeParameters(imagePoints,worldPoints,imageSize);

Remove lens distortion from the first image I and display the results.

J1 = undistortFisheyeImage(I,params.Intrinsics);

figure

imshowpair(I,J1, 'montage"')

title('Original Image (left) vs. Corrected Image (right)')

J2 = undistortFisheyeImage(I,params.Intrinsics, 'OutputView', 'full');
figure

imshow(J2)

title('Full Output View')

Original Image (left) vs. Corrected Image (right)
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Full Output View

References
[1] Scaramuzza, D., A. Martinelli, and R. Siegwart. "A Toolbox for Easy Calibrating

Omnidirectional Cameras." Proceedings to IEEE International Conference on
Intelligent Robots and Systems, (IROS). Beijing, China, October 7-15, 2006.

6-19



6 Registration and Stereo Vision

See Also

estimateFisheyeParameters | fisheyeCalibrationErrors |
fisheyeIntrinsics | fisheyeIntrinsicsEstimationErrors |
fisheyeParameters | undistortFisheyeImage | undistortFisheyePoints

Related Examples
. “Monocular Visual Odometry”
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Single Camera Calibrator App

In this section...

“Camera Calibrator Overview” on page 6-21

“Single Camera Calibration” on page 6-21

“Open the Camera Calibrator” on page 6-22

“Prepare the Pattern, Camera, and Images” on page 6-22
“Add Images and Select Camera Model” on page 6-26
“Calibrate” on page 6-30

“Evaluate Calibration Results” on page 6-32

“Improve Calibration” on page 6-37

“Export Camera Parameters” on page 6-41

Camera Calibrator Overview

You can use the Camera Calibrator app to estimate camera intrinsics, extrinsics, and
lens distortion parameters. You can use these camera parameters for various computer
vision applications. These applications include removing the effects of lens distortion from
an image, measuring planar objects, or reconstructing 3-D scenes from multiple cameras.

The suite of calibration functions used by the Camera Calibrator app provide the

workflow for camera calibration. You can use these functions directly in theMATLAB
workspace. For a list of functions, see “Single and Stereo Camera Calibration”.

Single Camera Calibration

prepare images improve

Follow this workflow to calibrate your camera using the app:
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Prepare images, camera, and calibration pattern.

Add images and select standard or fisheye camera model.
Calibrate the camera.

Evaluate calibration accuracy.

Adjust parameters to improve accuracy (if necessary).

o U1 A W N R

Export the parameters object.

In some cases, the default values work well, and you do not need to make any
improvements before exporting parameters. You can also make improvements using the
camera calibration functions directly in the MATLAB workspace. For a list of functions,
see “Single and Stereo Camera Calibration”.

Open the Camera Calibrator

* MATLAB Toolstrip: On the Apps tab, in the Image Processing and Computer Vision
section, click the Camera Calibrator icon.

¢ MATLAB command prompt: Enter cameraCalibrator

Prepare the Pattern, Camera, and Images

To better the results, use between 10 and 20 images of the calibration pattern. The
calibrator requires at least three images. Use uncompressed images or lossless
compression formats such as PNG. The calibration pattern and the camera setup must
satisfy a set of requirements to work with the calibrator. For greater calibration accuracy,
follow these instructions for preparing the pattern, setting up the camera, and capturing
the images.

Note The Camera Calibrator app supports only checkerboard patterns. If you are using a
different type of calibration pattern, you can still calibrate your camera using the
estimateCameraParameters function. Using a different type of pattern requires that
you supply your own code to detect the pattern points in the image.

Prepare the Checkerboard Pattern

The Camera Calibrator app uses a checkerboard pattern. A checkerboard pattern is a
convenient calibration target. If you want to use a different pattern to extract key points,
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you can use the camera calibration MATLAB functions directly. See “Single and Stereo
Camera Calibration” for the list of functions.

You can print (from MATLAB) and use the checkerboard pattern provided. The
checkerboard pattern you use must not be square. One side must contain an even number
of squares and the other side must contain an odd number of squares. Therefore, the
pattern contains two black corners along one side and two white corners on the opposite
side. This criteria enables the app to determine the orientation of the pattern. The
calibrator assigns the longer side to be the x-direction.

B W

To prepare the checkerboard pattern:

1 Attach the checkerboard printout to a flat surface. Imperfections on the surface can
affect the accuracy of the calibration.

2 Measure one side of the checkerboard square. You need this measurement for
calibration. The size of the squares can vary depending on printer settings.

Size of checkerboard square
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3 To improve the detection speed, set up the pattern with as little background clutter
as possible.

Camera Setup

To calibrate your camera, follow these rules:

* Keep the pattern in focus, but do not use autofocus.
+ Ifyou change zoom settings between images, the focal length changes.

Capture Images

For better results, use at least 10 to 20 images of the calibration pattern. The calibrator
requires at least three images. Use uncompressed images or images in lossless
compression formats such as PNG. For greater calibration accuracy:

* Capture the images of the pattern at a distance roughly equal to the distance from
your camera to the objects of interest. For example, if you plan to measure objects
from 2 meters, keep your pattern approximately 2 meters from the camera.

* Place the checkerboard at an angle less than 45 degrees relative to the camera plane.

N B < 450

* Do not modify the images, (for example, do not crop them).
* Do not use autofocus or change the zoom settings between images.

* Capture the images of a checkerboard pattern at different orientations relative to the
camera.
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» Capture a variety of images of the pattern so that you have accounted for as much of
the image frame as possible. Lens distortion increases radially from the center of the
image and sometimes is not uniform across the image frame. To capture this lens
distortion, the pattern must appear close to the edges of the captured images.

B &y |2 B
)

The Calibrator works with a range of checkerboard square sizes. As a general rule, your
checkerboard should fill at least 20% of the captured image. For example, the preceding

images were taken with a checkerboard square size of 108 mm, as the following montage
shows:
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Add Images and Select Camera Model

To begin calibration, you must add images. You can add saved images from a folder or add
images directly from a camera. The calibrator analyzes the images to ensure they meet
the calibrator requirements. The calibrator then detects the points on the checkerboard.

Add Images from File

On the Calibration tab, in the File section, click Add images, and then select From
file. You can add images from multiple folders by clicking Add images for each folder.

Acquire Live Images

To begin calibration, you must add images. You can acquire live images from a webcam
using the MATLAB Webcam support. To use this feature, you must install MATLAB
Support Package for USB Webcams. See “Install the MATLAB Support Package for USB
Webcams” (Image Acquisition Toolbox) for information on installing the support package.
To add live images, follow these steps.

1  On the Calibration tab, in the File section, click Add Images, then select From
camera.

This action opens the Camera tab opens. If you have only one webcam connected to
your system, it is selected by default and a live preview window opens. If you have
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multiple cameras connected and want to use one different from the default, select
that specific camera in the Camera list.

Set properties for the camera to control the image (optional). Click the Camera
Properties to open a menu of the properties for the selected camera. This list varies
depending on your device.

Use the sliders or drop-down list to change any available property settings. The
Preview window updates dynamically when you change a setting. When you are done
setting properties, click anywhere outside of the menu box to dismiss the properties
list.

Enter a location for the acquired image files in the Save Location box by typing the
path to the folder or using the Browse button. You must have permission to write to
the folder you select.

Set the capture parameters.

* To set the number of seconds between image captures, use the Capture Interval
box or slider. The default is 5 seconds, the minimum is 1 second, and the
maximum is 60 seconds.

* To set the number of image captures, use the Number of images to capture box
or slider. The default is 20 images, the minimum is 2 images, and the maximum is
100 images.

In the default configuration, a total of 20 images are captured, one every 5 seconds.

The Preview window shows the live images streamed as RGB data. After you adjust
any device properties and capture settings, use the Preview window as a guide to line
up the camera to acquire the checkerboard pattern image you want to capture.

Click the Capture button. The number of images you set are captured and the
thumbnails of the snapshots appear in the Data Browser pane. They are
automatically named incrementally and are captured as . png files.

You can optionally stop the image capture before the designated number of images
are captured by clicking Stop Capture.

When you are capturing images of a checkerboard, after the designated number of
images are captured, a Checkerboard Square Size dialog box displays. Specify the
size of the checkerboard square, then click OK.
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The detection results are then calculated and displayed. For example:

Total images processed:
Added images: 12

Rejected images: 8 | view images |
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7  Click OK to dismiss the Detection Results dialog box.

8 When you have finished acquiring live images, click Close Image Capture to close
the Camera tab.

Analyze Images

After you add the images, the Checkerboard Square Size dialog box appears. Specify size
of the checkerboard square by entering the length of one side of a square from the
checkerboard pattern.

Checkerboard Square Size [ = &I

Size of checkerbeard square: 25 mm -

OK

Size of checkerboard square

The calibrator attempts to detect a checkerboard in each of the added images, displaying
an Analyzing Images progress bar window, indicating detection progress. If any of the
images are rejected, the Detection Results dialog box appears, which contains diagnostic
information. The results indicate how many total images were processed, and of those
processed, how many were accepted, rejected, or skipped. The calibrator skips duplicate

images.
r -
Detection Results I. — | |iE-I
Total images processed: 13
Added images: i
Rejected images: 3 view images
QK
L A&

To view the rejected images, click View images. The calibrator rejects duplicate images.
It also rejects images where the entire checkerboard could not be detected. Possible
reasons for no detection are a blurry image or an extreme angle of the pattern. Detection
takes longer with larger images and with patterns that contain a large number of squares.
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View Images and Detected Points

The Data Browser pane displays a list of images with IDs. These images contain a
detected pattern. To view an image, select it from the Data Browser pane.

i 1:
i limage.jpeg

2image.jpeg

3
3image.jpeg

dimage.jpeg

Simage,jpeg

6:
Gimage,jpeg

»

m

() Detected points
Checkerboard origin |

The Image window displays the selected checkerboard image with green circles to
indicate detected points. You can verify that the corners were detected correctly using the
zoom controls. The yellow square indicates the (0,0) origin. The X and Y arrows indicate
the checkerboard axes orientation.

Calibrate

Once you are satisfied with the accepted images, click the Calibrate button on the
Calibration tab. The default calibration settings assume the minimum set of camera
parameters. Start by running the calibration with the default settings. After evaluating
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the results, you can try to improve calibration accuracy by adjusting the settings and
adding or removing images and then calibrating again. If you switch between standard
and fisheye camera model, you must recalibrate.

Select Camera Model

You can select either a standard or fisheye camera model on the Calibration tab, in the
Camera Model section, select Standard or Fisheye.

You can switch camera models at any point in the session. You must calibrate again after
any changes you make to the app's settings. Click Options to access settings and
optimizations for either camera model.

Standard Model Options

When the camera has severe lens distortion, the app can fail to compute the initial values
for the camera intrinsics. If you have the manufacturer’s specifications for your camera
and know the pixel size, focal length, or lens characteristics, you can manually set initial
guesses for camera intrinsics and radial distortion. To set initial guesses, click Options >
Optimization Options.

* Select the top checkbox and then enter a 3-by-3 matrix to specify initial intrinsics. If
you do not specify an initial guess, the function computes the initial intrinsic matrix
using linear least squares.

* Select the bottom checkbox and then enter a 2- or 3-element vector to specify the
initial radial distortion. If you do not provide a value, the function uses 0 as the initial
value for all the coefficients.

Fisheye Model Options

In the Camera Model section, with Fisheye selected, click Options. Select Estimate
Alignment to enable estimation of the axes alignment when the optical axis of the fisheye
lens is not perpendicular to the image plane.

Calibration Algorithm

See “Fisheye Calibration Basics” on page 6-13 for the fisheye camera model calibration
algorithm.

The standard camera model calibration algorithm assumes a pinhole camera model:

w[xyl]=[XYZl]1:]K
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* (X,Y,Z): world coordinates of a point.
* (x,y): image coordinates of the corresponding image point in pixels.
* w: arbitrary homogeneous coordinates scale factor.

e K: camera intrinsic matrix, defined as.

fx 00

s fy0
cx ¢y 1

The coordinates (c, c,) represent the optical center (the principal point), in pixels.
When the x- and y-axes are exactly perpendicular, the skew parameter, s, equals 0. The
matrix elements are defined as:

fi = F*sy

fy = F*sy

F is the focal length in world units, typically expressed in millimeters.

[sx, sy] are the number of pixels per world unit in the x and y direction respectively.

fx and f; are expressed in pixels.

* R: matrix representing the 3-D rotation of the camera .
* t: translation of the camera relative to the world coordinate system.

The camera calibration algorithm estimates the values of the intrinsic parameters, the
extrinsic parameters, and the distortion coefficients. Camera calibration involves these
steps:

1 Solve for the intrinsics and extrinsics in closed form, assuming that lens distortion is
zero. [1]

2  Estimate all parameters simultaneously, including the distortion coefficients, using
nonlinear least-squares minimization (Levenberg-Marquardt algorithm). Use the
closed-form solution from the preceding step as the initial estimate of the intrinsics
and extrinsics. Set the initial estimate of the distortion coefficients to zero. [1][2]

Evaluate Calibration Results
You can evaluate calibration accuracy by examining the reprojection errors, examining

the camera extrinsics, or viewing the undistorted image. For best calibration results, use
all three methods of evaluation.
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Examine Reprojection Errors

The reprojection errors are the distances, in pixels, between the detected and the
reprojected points. The Camera Calibrator app calculates reprojection errors by
projecting the checkerboard points from world coordinates, defined by the checkerboard,
into image coordinates. The app then compares the reprojected points to the
corresponding detected points. As a general rule, mean reprojection errors of less than
one pixel are acceptable.
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checkerboard points
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reprojection error<’

The Camera Calibrator app displays, in pixels, the reprojection errors as a bar graph.
The graph helps you to identify which images that adversely contribute to the calibration.
Select the bar graph entry and remove the image from the list of images in the Data
Browser pane.

Reprojection Errors Bar Graph

The bar graph displays the mean reprojection error per image, along with the overall
mean error. The bar labels correspond to the image IDs. The highlighted bars correspond
to the selected images.
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Images

Select an image in one of these ways:

* Click a corresponding bar in the graph.
» Select an image from the list of images in the Data Browser pane.

* Adjust the overall mean error. Click and slide the red line up or down to select outlier
images.

Examine Extrinsic Parameter Visualization

The 3-D extrinsic parameters plot provides a camera-centric view of the patterns and a
pattern-centric view of the camera. The camera-centric view is helpful if the camera was
stationary when the images were captured. The pattern-centric view is helpful if the
pattern was stationary. You can click the cursor and hold down the mouse button with the
rotate icon to rotate the figure. Click a checkerboard (or camera) to select it. The
highlighted data in the visualizations correspond to the selected image in the list.
Examine the relative positions of the pattern and the camera to determine if they match
what you expect. For example, a pattern that appears behind the camera indicates a
calibration error.
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To view the effects of removing lens distortion, click Show Undistorted in the View
section of the Calibration tab. If the calibration was accurate, the distorted lines in the

image become straight.
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Checking the undistorted images is important even if the reprojection errors are low. For
example, if the pattern covers only a small percentage of the image, the distortion
estimation might be incorrect, even though the calibration resulted in few reprojection
errors. The following image shows an example of this type of incorrect estimation for a
single camera calibration.

While viewing the undistorted images, you can examine the fisheye images more closely
by selecting Fisheye Scale in the View section of the Calibration tab. Use the slider in
the Scale Factor window to adjust the scale of the image.

‘| ]
E Show Undistorted

@ttt |1.834

gopro03.jpg

Improve Calibration

To improve the calibration, you can remove high-error images, add more images, or
modify the calibrator settings.
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Add or Remove Images

Consider adding more images if:

* You have less than 10 images.
* The patterns do not cover enough of the image frame.

* The patterns do not have enough variation in orientation with respect to the camera.
Consider removing images if the images:

* The images have a high mean reprojection error.
* The images are blurry.

* The images contain a checkerboard at an angle greater than 45 degrees relative to the
camera plane.

__‘_______

N B < 450

* The images contain incorrectly detected checkerboard points.
Standard Model: Change the Number of Radial Distortion Coefficients

You can specify two or three radial distortion coefficients. On the Calibrations tab, in the
Camera Model section, with Standard selected, click Options. Select the Radial
Distortion as either 2 Coefficients or 3 Coefficients. Radial distortion occurs when
light rays bend more near the edges of a lens than they do at its optical center. The
smaller the lens, the greater the distortion.
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1 \ |

Negative radial distortion No distortion Positive radial distortion
“pincushion” “barrel”

The radial distortion coefficients model this type of distortion. The distorted points are
denoted as (Xaistorteds ydistorted):

Xdistorted = x(1 + ki*r? + ko*rt + k3*l’6)
Vdistorted™= ya + ky*r2 + ky*rt + k3*l’6)

* X, y — Undistorted pixel locations. x and y are in normalized image coordinates.
Normalized image coordinates are calculated from pixel coordinates by translating to
the optical center and dividing by the focal length in pixels. Thus, x and y are
dimensionless.

* k4, k,, and k3 — Radial distortion coefficients of the lens.
o Thx2 4y

Typically, two coefficients are sufficient for calibration. For severe distortion, such as in
wide-angle lenses, you can select 3 coefficients to include k.

The undistorted pixel locations are in normalized image coordinates, with the origin at
the optical center. The coordinates are expressed in world units.

Standard Model: Compute Skew

When you select the Compute Skew check box, the calibrator estimates the image axes
skew. Some camera sensors contain imperfections that cause the x- and y-axes of the
image to not be perpendicular. You can model this defect using a skew parameter. If you
do not select the check box, the image axes are assumed to be perpendicular, which is the
case for most modern cameras.
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Standard Model: Compute Tangential Distortion

Tangential distortion occurs when the lens and the image plane are not parallel. The
tangential distortion coefficients model this type of distortion.

Zero Tangential Distortion Tangential Distortion
Lens and sensor are parallel Lens and sensor are not parallel
Camera lens Camera lens
Vertical plane Vertical plane
Camera u
sensor Camera
sensor

The distorted points are denoted as (Xgistorted: Vdistorted):
Xdistorted = X + [2 * p1 * X * y + P2 * (r2 + 2 * Xz)]
Vasored = Y+ Ipp ¥ 4+ 2 %) o+ 2 * pp *ox x Y]

* X, y — Undistorted pixel locations. x and y are in normalized image coordinates.
Normalized image coordinates are calculated from pixel coordinates by translating to
the optical center and dividing by the focal length in pixels. Thus, x and y are
dimensionless.

* p; and p, — Tangential distortion coefficients of the lens.
o rax?+ )2
When you select the Compute Tangential Distortion check box, the calibrator

estimates the tangential distortion coefficients. Otherwise, the calibrator sets the
tangential distortion coefficients to zero.
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Fisheye Model: Estimate Alignment

In the Camera Model section, with Fisheye selected, click Options. Select Estimate
Alignment to enable estimation of the axes alignment when the optical axis of the fisheye
lens is not perpendicular to the image plane.

Export Camera Parameters

When you are satisfied with calibration accuracy, click Export Camera Parameters. You
can either save and export the camera parameters to an object by selecting Export
Camera Parameters or generate the camera parameters as a MATLAB script.

Export Camera Parameters

Select Export Camera Parameters > Export Parameters to Workspace to create a
cameraParameters object in your workspace. The object contains the intrinsic and
extrinsic parameters of the camera and the distortion coefficients. You can use this object
for various computer vision tasks, such as image undistortion, measuring planar objects,
and 3-D reconstruction. See “Measuring Planar Objects with a Calibrated Camera”. You
can optionally export the cameraCalibrationErrors object, which contains the
standard errors of estimated camera parameters, by selecting the Export estimation
errors check box.

Generate MATLAB Script
Select Export Camera Parameters > Generate MATLAB script to save your camera

parameters to a MATLAB script, enabling you to reproduce the steps from your
calibration session.
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Related Examples

. “Evaluating the Accuracy of Single Camera Calibration”
. “Measuring Planar Objects with a Calibrated Camera”

. “Structure From Motion From Two Views”

. “Structure From Motion From Multiple Views”

. “Depth Estimation From Stereo Video”

. “3-D Point Cloud Registration and Stitching”
. “Uncalibrated Stereo Image Rectification”
. Checkerboard pattern

More About

. “Stereo Camera Calibrator App” on page 6-43
. “Coordinate Systems”

External Websites
. Camera Calibration with MATLAB


matlab: open checkerboardPattern.pdf
https://www.mathworks.com/videos/camera-calibration-with-matlab-81233.html
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Stereo Camera Calibrator App

In this section...

“Stereo Camera Calibrator Overview” on page 6-43
“Stereo Camera Calibration” on page 6-44

“Open the Stereo Camera Calibrator” on page 6-44
“Prepare Pattern, Camera, and Images” on page 6-44
“Add Image Pairs” on page 6-49

“Calibrate” on page 6-52

“Evaluate Calibration Results” on page 6-53
“Improve Calibration” on page 6-57

“Export Camera Parameters” on page 6-60

Stereo Camera Calibrator Overview

You can use the Stereo Camera Calibrator app to calibrate a stereo camera, which you
can then use to recover depth from images. A stereo system consists of two cameras:
camera 1 and camera 2. The app can either estimate or import the parameters of
individual cameras. The app also calculates the position and orientation of camera 2,
relative to camera 1.

The Stereo Camera Calibrator app produces an object containing the stereo camera
parameters. You can use this object to

* Rectify stereo images using the rectifyStereoImages function.
* Reconstruct the 3-D scene using the reconstructScene function.

* Compute 3-D locations corresponding to matching pairs of image points using the
triangulate function.

The suite of calibration functions used by the Stereo Camera Calibrator app provide the
workflow for stereo system calibration. You can use these functions directly in the
MATLAB workspace. For a list of calibration functions, see “Single and Stereo Camera
Calibration”.

Note You can use the Camera Calibrator app with cameras up to a field of view (FOV) of
95 degrees.
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Stereo Camera Calibration

prepare images calibrate improve

Follow this workflow to calibrate your stereo camera using the app:

Prepare images, camera, and calibration pattern.

Add image pairs.

Calibrate the stereo camera.

Evaluate calibration accuracy.

Adjust parameters to improve accuracy (if necessary).

Export the parameters object.

N O o A W N R

In some cases, the default values work well, and you do not need to make any
improvements before exporting parameters. You can also make improvements using
the camera calibration functions directly in the MATLAB workspace. For a list of
functions, see “Single and Stereo Camera Calibration”.

Open the Stereo Camera Calibrator

* MATLAB Toolstrip: On the Apps tab, in the Image Processing and Computer Vision
section, click the Stereo Camera Calibrator icon.

* MATLAB command prompt: Enter stereoCameraCalibrator

Prepare Pattern, Camera, and Images

To improve the results, use between 10 and 20 images of the calibration pattern. The
calibrator requires at least three images. Use uncompressed images or lossless
compression formats such as PNG. The calibration pattern and the camera setup must
satisfy a set of requirements to work with the calibrator. For greater calibration accuracy,
follow these instructions for preparing the pattern, setting up the camera, and capturing
the images.
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Prepare the Checkerboard Pattern

The Camera Calibrator app uses a checkerboard pattern. A checkerboard pattern is a
convenient calibration target. If you want to use a different pattern to extract key points,
you can use the camera calibration MATLAB functions directly. See “Single and Stereo
Camera Calibration” for the list of functions.

You can print (from MATLAB) and use the checkerboard pattern provided. The
checkerboard pattern you use must not be square. One side must contain an even number
of squares and the other side must contain an odd number of squares. Therefore, the
pattern contains two black corners along one side and two white corners on the opposite
side. This criteria enables the app to determine the orientation of the pattern. The
calibrator assigns the longer side to be the x-direction.

To prepare the checkerboard pattern:

1  Attach the checkerboard printout to a flat surface. Imperfections on the surface can
affect the accuracy of the calibration.

2 Measure one side of the checkerboard square. You need this measurement for
calibration. The size of the squares can vary depending on printer settings.
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Size of checkerboard square

3 To improve the detection speed, set up the pattern with as little background clutter
as possible.

Camera Setup
To calibrate your camera, follow these rules:

* Keep the pattern in focus, but do not use autofocus.
» Ifyou change zoom settings between images, the focal length changes.

Capture Images

For best results, use at least 10 to 20 images of the calibration pattern. The calibrator
requires at least three images. Use uncompressed images or images in lossless
compression formats such as PNG. For greater calibration accuracy:

* Capture the images of the pattern at a distance roughly equal to the distance from
your camera to the objects of interest. For example, if you plan to measure objects
from 2 meters, keep your pattern approximately 2 meters from the camera.

» Place the checkerboard at an angle less than 45 degrees relative to the camera plane.
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N 6 < 450

Do not modify the images, (for example, do not crop them).
Do not use autofocus or change the zoom settings between images.

Capture the images of a checkerboard pattern at different orientations relative to the
camera.

Capture a variety of images of the pattern so that you have accounted for as much of
the image frame as possible. Lens distortion increases radially from the center of the
image and sometimes is not uniform across the image frame. To capture this lens
distortion, the pattern must appear close to the edges of the captured images.
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» Make sure the checkerboard pattern is fully visible in both images of each stereo pair.

A
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* Keep the pattern stationary for each image pair. Any motion of the pattern between
taking image 1 and image 2 of the pair negatively affects the calibration.

* Create a stereo display, or anaglyph, by positioning the two cameras approximately 55
mm apart. This distance represents the average distance between human eyes.

» For greater reconstruction accuracy at longer distances, position your cameras farther
apart.

Add Image Pairs

To begin calibration, click , specifically two sets of stereo images of the checkerboard,one
set from each camera.

Load Images

You can add images from multiple folders by clicking Add images in the File section of
the Calibration tab. Select the location for the images corresponding to camera 1 using
the Browse button, then do the same for camera 2. Specify Size of checkerboard
square by entering the length of one side of a square from the checkerboard pattern.

Size of checkerboard square

Analyze Images

The calibrator attempts to detect a checkerboard in each of the added images, displaying
an Analyzing Images progress bar window, indicating detection progress. If any of the
images are rejected, the Detection Results dialog box appears, which contains diagnostic
information. The results indicate how many total images were processed, and of those
processed, how many were accepted, rejected, or skipped. The calibrator skips duplicate
images.
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Total stereo pairs processed: 11
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To view the rejected images, click View images. The calibrator rejects duplicate images.
It also rejects images where the entire checkerboard could not be detected. Possible
reasons for no detection are a blurry image or an extreme angle of the pattern. Detection
takes longer with larger images and with patterns that contain a large number of squares.

View Images and Detected Points

The Data Browser pane displays a list of image pairs with IDs. These image pairs contain
a detected pattern. To view an image, select it from the Data Browser pane.
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The Image pane displays the selected checkerboard image pair with green circles to
indicate detected points. You can verify that the corners were detected correctly using the
zoom controls. The yellow square indicates the (0,0) origin. The X and Y arrows indicate
the checkerboard axes orientation.

Intrinsics

You can choose for the app to compute camera intrinsics or you can load pre-computed
fixed intrinsics. To load intrinsics into the app, select Use Fixed Intrinsics in the
Intrinsics section of the Calibration tab. The Radial Distortion and Compute options in
the Options section are disabled when you load intrinsics.

To load intrinsics as variables from your workspace, click Load Intrinsics. For example,
if the wideBaselineStereo struct contains the intrinsics for both cameras.
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1d = load('wideBaselineStereo');
intl ld.intrinsicsl
int2 ld.intrinsics?2

Then, click Load Intrinsics to specify these variables in the dialog box, as shown.

4 Load intrinsics from W... — hd
Intrinsics variable for camera 1:

int1 W

Intrinsics variable for camera 2:

int2 v

Ok Cancel

Calibrate

Once you are satisfied with the accepted image pairs, click the Calibrate button on the
Calibration tab. The default calibration settings assume the minimum set of camera
parameters. Start by running the calibration with the default settings. After evaluating
the results, you can try to improve calibration accuracy by adjusting the settings and
adding or removing images, and then calibrate again.

Optimization

When the camera has severe lens distortion, the app can fail to compute the initial values
for the camera intrinsics. If you have the manufacturer’s specifications for your camera
and know the pixel size, focal length, or lens characteristics, you can manually set initial
guesses for camera intrinsics and radial distortion. To set initial guesses, click Options >
Optimization Options.

Note These options are not available for preloaded intrinsics.
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» Select the top checkbox and then enter a 3-by-3 matrix to specify initial intrinsics. If
you do not specify an initial guess, the function computes the initial intrinsic matrix
using linear least squares.

* Select the bottom checkbox and then enter a 2- or 3-element vector to specify the
initial radial distortion. If you do not provide a value, the function uses 0 as the initial
value for all the coefficients.

Evaluate Calibration Results

You can evaluate calibration accuracy by examining the reprojection errors, examining
the camera extrinsics, or viewing the undistorted image. For best calibration results, use
all three methods of evaluation.
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New  Open Save Add ;'_ Default - 3 Coefficients [ Tangential Distortion  Optimization  Calbrate  Show Rectified  Export Camera

Session Session Session v Images & | Pan Layout | Load intrinsics Options. Paramaters
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Examine Reprojection Errors

The reprojection errors are the distances, in pixels, between the detected and the
reprojected points. The Stereo Camera Calibrator app calculates reprojection errors by
projecting the checkerboard points from world coordinates, defined by the checkerboard,
into image coordinates. The app then compares the reprojected points to the
corresponding detected points. As a general rule, mean reprojection errors of less than
one pixel are acceptable.

world coordinates of
checkerboard points

( stereoParameters

points detected

from image pairs points reprojected

using stereo parameters

reprojection error<’

The Stereo Calibration App displays, in pixels, the reprojection errors as a bar graph.
The graph helps you to identify which images that adversely contribute to the calibration.
Select the bar graph entry and remove the image from the list of images in the Data
Browser pane.

Reprojection Errors Bar Graph

The bar graph displays the mean reprojection error per image, along with the overall
mean error. The bar labels correspond to the image IDs. The highlighted bars correspond
to the selected image pair.
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Select an image pair in one of these ways:

» Clicking the corresponding bar in the graph.
* Select the image pair from the list in the Data Browser pane.

* Adjust the overall mean error. Click and slide the red line up or down to select outlier
images.

Examine Extrinsic Parameter Visualization

The 3-D extrinsic parameters plot provides a camera-centric view of the patterns and a
pattern-centric view of the camera. The camera-centric view is helpful if the camera was
stationary when the images were captured. The pattern-centric view is helpful if the
pattern was stationary. You can click the cursor and hold down the mouse button with the
rotate icon to rotate the figure. Click a checkerboard (or camera) to select it. The
highlighted data in the visualizations correspond to the selected image in the list.
Examine the relative positions of the pattern and the camera to determine if they match
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what you expect. For example, a pattern that appears behind the camera indicates a
calibration error.

[ Camera-centric ]_ [ Pattern-centric 1Camera—centric

B
-300
-200

| Pattern-centric

b b
==
==
L

Y (millimeters)
(4] n
ocoo
N k

Z (millimeters)

400 . 100 A
200 c 100 20 0 —F
1000 ——’——f
. 0 -
Z (millimeters) X (millimeters) - 0 100 N
X (millimeters) Y (millimeters)

100

Show Rectified Images

To view the effects of stereo rectification, click Show Rectified in the View section of the
Calibration tab. If the calibration was accurate, the images become undistorted and row-

aligned.

leftd 1.png & right01.png

() Datecied points
~+  Reprojeded points
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Checking the rectified images is important even if the reprojection errors are low. For
example, if the pattern covers only a small percentage of the image, the distortion
estimation might be incorrect, even though the calibration resulted in few reprojection
errors.The following image shows an example of this type of incorrect estimation for a
single camera calibration.

Improve Calibration

To improve the calibration, you can remove high-error image pairs, add more image pairs,
or modify the calibrator settings.

Add or Remove Images

Consider adding more images if:

* You have less than 10 images.
* The patterns do not cover enough of the image frame.

* The patterns do not have enough variation in orientation with respect to the camera.
Consider removing images if the images:

* The images have a high mean reprojection error.
* The images are blurry.

» The images contain a checkerboard at an angle greater than 45 degrees relative to the
camera plane.
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N 8 < 45°

* The images contain incorrectly detected checkerboard points.
Change the Number of Radial Distortion Coefficients

You can specify 2 or 3 radial distortion coefficients by selecting the corresponding radio
button from the Options section. Radial distortion occurs when light rays bend more near
the edges of a lens than they do at its optical center. The smaller the lens, the greater the

distortion.

i \ |
Negative radial distortion No distortion Positive radial distortion
“pincushion” “barrel”

The radial distortion coefficients model this type of distortion. The distorted points are
denoted as (Xgistorteds ydistorted):

Xdistorted = X(]. + kl*rz + k2*r4 + k3*r6)

Vdistorted= y(1 + kq*r? + k*r + ky*r5)



Stereo Camera Calibrator App

* X, y — Undistorted pixel locations. x and y are in normalized image coordinates.
Normalized image coordinates are calculated from pixel coordinates by translating to
the optical center and dividing by the focal length in pixels. Thus, x and y are
dimensionless.

* ki, ky, and k; — Radial distortion coefficients of the lens.

o 12X+ )2

Typically, two coefficients are sufficient for calibration. For severe distortion, such as in
wide-angle lenses, you can select 3 coefficients to include k.

Compute Skew

When you select the Compute Skew check box, the calibrator estimates the image axes
skew. Some camera sensors contain imperfections that cause the x- and y-axes of the
image to not be perpendicular. You can model this defect using a skew parameter. If you
do not select the check box, the image axes are assumed to be perpendicular, which is the
case for most modern cameras.

Compute Tangential Distortion

Tangential distortion occurs when the lens and the image plane are not parallel. The
tangential distortion coefficients model this type of distortion.

Zero Tangential Distortion Tangential Distortion
Lens and sensor are parallel Lens and sensor are not parallel
Camera lens Camera lens
Vertical plane Vertical plane
Camera u
sensor Camera
sensor

The distorted points are denoted as (Xgistorteds Vdistorted):

6-59



6 Registration and Stereo Vision

6-60

Xgistorted = X + [2 * p * x * 'y + p, * r* + 2 * x?]
Ydistorted = y + [p 1 * (r2 + 2 *y 2) + 2 * p2 * X * y ]

* X, y — Undistorted pixel locations. x and y are in normalized image coordinates.
Normalized image coordinates are calculated from pixel coordinates by translating to
the optical center and dividing by the focal length in pixels. Thus, x and y are
dimensionless.

* p; and p, — Tangential distortion coefficients of the lens.

. rZ: x2 + y2

When you select the Compute Tangential Distortion check box, the calibrator
estimates the tangential distortion coefficients. Otherwise, the calibrator sets the
tangential distortion coefficients to zero.

Export Camera Parameters

When you are satisfied with calibration accuracy, click Export Camera Parameters. You
can either save and export the camera parameters to an object by selecting Export
Camera Parameters or generate the camera parameters as a MATLAB script.

Export Camera Parameters

Select Export Camera Parameters > Export Parameters to Workspace to create a
stereoParameters object in your workspace. The object contains the intrinsic and
extrinsic parameters of the camera and the distortion coefficients. You can use this object
for various computer vision tasks, such as image undistortion, measuring planar objects,
and 3-D reconstruction. See “Measuring Planar Objects with a Calibrated Camera”. You
can optionally export the stereoCalibrationErrors object, which contains the
standard errors of estimated stereo camera parameters, by selecting the Export
estimation errors check box.

Generate MATLAB Script
Select Export Camera Parameters > Generate MATLAB script to save your camera

parameters to a MATLAB script, enabling you to reproduce the steps from your
calibration session.



See Also

References

[1] Zhang, Z. “A Flexible New Technique for Camera Calibration”. IEEE Transactions on
Pattern Analysis and Machine Intelligence.Vol. 22, No. 11, 2000, pp. 1330-1334.

[2] Heikkila, ], and O. Silven. “A Four-step Camera Calibration Procedure with Implicit
Image Correction.” IEEE International Conference on Computer Vision and
Pattern Recognition. 1997.

See Also

Camera Calibrator | Stereo Camera Calibrator | cameraParameters |
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Related Examples

. “Evaluating the Accuracy of Single Camera Calibration”
. “Measuring Planar Objects with a Calibrated Camera”

. “Structure From Motion From Two Views”

. “Structure From Motion From Multiple Views”

. “Depth Estimation From Stereo Video”

. “3-D Point Cloud Registration and Stitching”
. “Uncalibrated Stereo Image Rectification”
. Checkerboard pattern

More About

. “Single Camera Calibrator App” on page 6-21
. “Coordinate Systems”

External Websites
. Camera Calibration with MATLAB
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Geometric camera calibration, also referred to as camera resectioning, estimates the
parameters of a lens and image sensor of an image or video camera. You can use these
parameters to correct for lens distortion, measure the size of an object in world units, or
determine the location of the camera in the scene. These tasks are used in applications
such as machine vision to detect and measure objects. They are also used in robotics, for
navigation systems, and 3-D scene reconstruction.

Examples of what you can do after calibrating your camera:

Before

R
Measure Planar Objects

Estimate Depth
Using a Stereo Camera

Camera parameters include intrinsics, extrinsics, and distortion coefficients. To estimate
the camera parameters, you need to have 3-D world points and their corresponding 2-D
image points. You can get these correspondences using multiple images of a calibration
pattern, such as a checkerboard. Using the correspondences, you can solve for the
camera parameters. After you calibrate a camera, to evaluate the accuracy of the
estimated parameters, you can:

* Plot the relative locations of the camera and the calibration pattern
* Calculate the reprojection errors.
e Calculate the parameter estimation errors.



What Is Camera Calibration?

Use the Camera Calibrator to perform camera calibration and evaluate the accuracy of
the estimated parameters.

Camera Model

The Computer Vision Toolbox calibration algorithm uses the camera model proposed by
Jean-Yves Bouguet [3]. The model includes:

* The pinhole camera model [1].

* Lens distortion [2].

The pinhole camera model does not account for lens distortion because an ideal pinhole

camera does not have a lens. To accurately represent a real camera, the full camera
model used by the algorithm includes the radial and tangential lens distortion.

Pinhole Camera Model

A pinhole camera is a simple camera without a lens and with a single small aperture.
Light rays pass through the aperture and project an inverted image on the opposite side
of the camera. Think of the virtual image plane as being in front of the camera and
containing the upright image of the scene.

2-Dimage| |Image plane| | Focal point| | Virtual image plane| |3-D object

The pinhole camera parameters are represented in a 4-by-3 matrix called the camera
matrix. This matrix maps the 3-D world scene into the image plane. The calibration
algorithm calculates the camera matrix using the extrinsic and intrinsic parameters. The
extrinsic parameters represent the location of the camera in the 3-D scene. The intrinsic
parameters represent the optical center and focal length of the camera.
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Camera Calibration Parameters

The calibration algorithm calculates the camera matrix using the extrinsic and intrinsic
parameters. The extrinsic parameters represent a rigid transformation from 3-D world
coordinate system to the 3-D camera’s coordinate system. The intrinsic parameters
represent a projective transformation from the 3-D camera’s coordinates into the 2-D
image coordinates.



What Is Camera Calibration?

Camera - Pixel
coordinates coordinates

World
coordinates

Extrinsic Intrinsic
parameters parameters

Extrinsic Parameters

The extrinsic parameters consist of a rotation, R, and a translation, t. The origin of the
camera’s coordinate system is at its optical center and its x- and y-axis define the image
plane.

Intrinsic Parameters

The intrinsic parameters include the focal length, the optical center, also known as the
principal point, and the skew coefficient. The camera intrinsic matrix, K, is defined as:

fx 00

s fy0
cx ¢y 1

The pixel skew is defined as:
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Skew

[cx cy] — Optical center (the principal point), in pixels.

(fx, fy) — Focal length in pixels.

fx=Flpx

fy=Flipy

F — Focal length in world units, typically expressed in millimeters.

(Px. Py) — Size of the pixel in world units.

s — Skew coefficient, which is non-zero if the image axes are not perpendicular.
s = fytana

Distortion in Camera Calibration

The camera matrix does not account for lens distortion because an ideal pinhole camera
does not have a lens. To accurately represent a real camera, the camera model includes
the radial and tangential lens distortion.

Radial Distortion

Radial distortion occurs when light rays bend more near the edges of a lens than they do
at its optical center. The smaller the lens, the greater the distortion.

S \ 11

Negative radial distortion No distortion Positive radial distortion
“pincushion” “barrel”
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The radial distortion coefficients model this type of distortion. The distorted points are
denoted as (Xdistorteds Vdistorted)

Xdistorted = x(1 + ki*r? + ko*rt + k*r6)
Vdistorted = y(1 + kq*r? + ky*r4 + ky*15)

* X, y — Undistorted pixel locations. x and y are in normalized image coordinates.
Normalized image coordinates are calculated from pixel coordinates by translating to
the optical center and dividing by the focal length in pixels. Thus, x and y are
dimensionless.

* ky, ko, and k; — Radial distortion coefficients of the lens.
o rax?+ )2

Typically, two coefficients are sufficient for calibration. For severe distortion, such as in
wide-angle lenses, you can select 3 coefficients to include ks.

Tangential Distortion

Tangential distortion occurs when the lens and the image plane are not parallel. The
tangential distortion coefficients model this type of distortion.

Zero Tangential Distortion Tangential Distortion
Lens and sensor are parallel Lens and sensor are not parallel
Camera lens Camera lens
Vertical plane Vertical plane
Camera u
sensor Camera
sensor

The distorted points are denoted as (Xgistorteds Vdistorted):
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Xgistorted = X + [2 * p * x * 'y + p, * r* + 2 * x?]
Vaistorted = Y+ I * (@ + 2 %) + 2 * p, ¥ x * y]

* X, y — Undistorted pixel locations. x and y are in normalized image coordinates.
Normalized image coordinates are calculated from pixel coordinates by translating to
the optical center and dividing by the focal length in pixels. Thus, x and y are
dimensionless.

* p; and p, — Tangential distortion coefficients of the lens.

. r2: x2 + y2
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See Also

“Single Camera Calibrator App” on page 6-21 | Camera Calibrator

Related Examples

. “Evaluating the Accuracy of Single Camera Calibration”
. “Measuring Planar Objects with a Calibrated Camera”
. “Structure From Motion From Two Views”
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Structure from Motion

Structure from Motion

In this section...

“Structure from Motion from Two Views” on page 6-69

“Structure from Motion from Multiple Views” on page 6-71

Structure from motion (SfM) is the process of estimating the 3-D structure of a scene
from a set of 2-D images. SfM is used in many applications, such as 3-D scanning and
augmented reality.

SfM can be computed in many different ways. The way in which you approach the
problem depends on different factors, such as the number and type of cameras used, and
whether the images are ordered. If the images are taken with a single calibrated camera,
then the 3-D structure and camera motion can only be recovered up to scale. up to scale
means that you can rescale the structure and the magnitude of the camera motion and
still maintain observations. For example, if you put a camera close to an object, you can
see the same image as when you enlarge the object and move the camera far away. If you
want to compute the actual scale of the structure and motion in world units, you need
additional information, such as:

* The size of an object in the scene
* Information from another sensor, for example, an odometer.

Structure from Motion from Two Views

For the simple case of structure from two stationary cameras or one moving camera, one
view must be considered camera 1 and the other one camera 2. In this scenario, the
algorithm assumes that camera 1 is at the origin and its optical axis lies along the z-axis.

(0,0,0) (x,v,2)

camara 1 carmera /

1 SfM requires point correspondences between images. Find corresponding points
either by matching features or tracking points from image 1 to image 2. Feature
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tracking techniques, such as Kanade-Lucas-Tomasi (KLT) algorithm, work well when
the cameras are close together. As cameras move further apart, the KLT algorithm
breaks down, and feature matching can be used instead.

camera 1

camera 2

Distance Between
Cameras (Baseline)

Method for Finding
Point Correspondences

Example

vision.PointTracker

Wide Match features using “Find Image Rotation and
matchFeatures Scale Using Automated
Feature Matching”
Narrow Track features using “Face Detection and

Tracking Using the KLT
Algorithm”

2 To find the pose of the second camera relative to the first camera, you must compute
the fundamental matrix. Use the corresponding points found in the previous step for
the computation. The fundamental matrix describes the epipolar geometry of the two
cameras. It relates a point in one camera to an epipolar line in the other camera. Use
the estimateFundamentalMatrix function to estimate the fundamental matrix.

O

Left Observation Point
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Structure from Motion

3 Input the fundamental matrix to the relativeCameraPose function.
relativeCameraPose returns the orientation and the location of the second camera
in the coordinate system of the first camera. The location can only be computed up to
scale, so the distance between two cameras is set to 1. In other words, the distance
between the cameras is defined to be 1 unit.

4 Determine the 3-D locations of the matched points using triangulate. Because the
pose is up to scale, when you compute the structure, it has the right shape but not
the actual size.

The triangulate function takes two camera matrices, which you can compute using
cameraMatrix.

5 Use pcshow to display the reconstruction, and use plotCamera to visualize the
camera poses.

To recover the scale of the reconstruction, you need additional information. One method
to recover the scale is to detect an object of a known size in the scene. The “Structure
From Motion From Two Views” example shows how to recover scale by detecting a
sphere of a known size in the point cloud of the scene.

Structure from Motion from Multiple Views

For most applications, such as robotics and autonomous driving, SfM uses more than two
views.

camera 1

The approach used for SfM from two views can be extended for multiple views. The set of
multiple views used for SfM can be ordered or unordered. The approach taken here
assumes an ordered sequence of views. SfM from multiple views requires point
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correspondences across multiple images, called tracks. A typical approach is to compute
the tracks from pairwise point correspondences. You can use viewSet to manage the
pairwise correspondences and find the tracks. Each track corresponds to a 3-D point in
the scene. To compute 3-D points from the tracks, use triangulateMultiview.

{xy.2)

. ~
- s

Using the approach in SfM from two views, you can find the pose of camera 2 relative to
camera 1. To extend this approach to the multiple view case, find the pose of camera 3
relative to camera 2, and so on. The relative poses must be transformed into a common
coordinate system. Typically, all camera poses are computed relative to camera 1 so that
all poses are in the same coordinate system. You can use viewSet to manage camera
poses. The viewSet object stores the views and connections between the views.

% Variables - vSet

[ vset |
(@] 11 viewSet
Property = Value
e Views | 5¢4 table
E Connections &5 table
EE‘I"-.Ium‘u‘iews 5
P ™ snsiedl et o



See Also

Every camera pose estimation from one view to the next contains errors. The errors arise
from imprecise point localization in images, and from noisy matches and imprecise
calibration. These errors accumulate as the number of views increases, an effect known
as drift. One way to reduce the drift, is to refine camera poses and 3-D point locations.
The nonlinear optimization algorithm, called bundle adjustment, implemented by the
bundleAdjustment function, can be used for the refinement.

o

o
. -
Estimated moving camera path Drift .

E T TActua moving camera path

i

The “Structure From Motion From Multiple Views” example shows how to reconstruct a
3-D scene from a sequence of 2-D views. The example uses the Camera Calibrator app
to calibrate the camera that takes the views. It uses a viewSet object to store and
manage the data associated with each view.

See Also

Camera Calibrator | Stereo Camera Calibrator | bundleAdjustment |
cameraMatrix | estimateFundamentalMatrix | matchFeatures | pointTrack |
relativeCameraPose | triangulateMultiview | viewSet | vision.PointTracker

Related Examples
. “Structure From Motion From Two Views”
. “Structure From Motion From Multiple Views”
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* “How Labeler Apps Store Exported Pixel Labels” on page 7-3
* “Anchor Boxes for Object Detection” on page 7-9

* “YOLO v2 Basics” on page 7-16

* “R-CNN, Fast R-CNN, and Faster R-CNN Basics” on page 7-22
* “Semantic Segmentation Basics” on page 7-30

* “Semantic Segmentation Examples” on page 7-33

* “Faster R-CNN Examples” on page 7-65

+ “Train Object Detector or Semantic Segmentation Network from Ground Truth Data”
on page 7-81

* “Create Automation Algorithm for Labeling” on page 7-84

* “Label Pixels for Semantic Segmentation” on page 7-88

* “Get Started with the Image Labeler” on page 7-100

* “Choose a Labeling App” on page 7-107

* “Get Started with the Video Labeler” on page 7-109

* “Use Custom Data Source Reader for Ground Truth Labeling” on page 7-130
* “Use Sublabels and Attributes to Label Ground Truth Data” on page 7-134
* “Temporal Automation Algorithms” on page 7-139

* “View Summary of Ground Truth Labels” on page 7-141

* “Share and Store Labeled Ground Truth Data” on page 7-147

* “Keyboard Shortcuts and Mouse Actions for Image Labeler” on page 7-153
» “Keyboard Shortcuts and Mouse Actions for Video Labeler” on page 7-157
* “Point Feature Types” on page 7-161

* “Local Feature Detection and Extraction” on page 7-169

» “Train a Cascade Object Detector” on page 7-187

* “Train Optical Character Recognition for Custom Fonts” on page 7-204

* “Troubleshoot ocr Function Results” on page 7-208
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* “Create a Custom Feature Extractor” on page 7-209
* “Image Retrieval with Bag of Visual Words” on page 7-213
* “Image Classification with Bag of Visual Words” on page 7-217
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How Labeler Apps Store Exported Pixel Labels

How Labeler Apps Store Exported Pixel Labels

When you create and export pixel labels from the Image Labeler, Video Labeler, or

Ground Truth Labeler (requires Automated Driving Toolbox™ ) app, two sets of data are
saved.

* A folder named PixelLabelData, which contains the PNG files of pixel label
information. These labels are encoded as indexed values.

* A MAT-file containing a groundTruth object, which stores correspondences between
image or video frames and the PNG files. The object also contains any marked
rectangles or polylines.

Pixel label data

% uint8 PNGs

{categorical matrix]

.l
Labelerapp /" PixelLabelData folder
—

Export Labels Ground truth data

T

. groundTruth object

MAT-file

The PNG files within the PixelLabelData folder are stored as a categorical matrix. The
categorical matrices contain values assigned to categories. Categorical is a data type.
A categorical matrix provides efficient storage and convenient manipulation of
nonnumeric data, while also maintaining meaningful names for the values. These matrices

are natural representations for semantic segmentation ground truth, where each pixel is
one of a predefined category of labels.
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Location of Pixel Label Data Folder

The groundTruth object stores the folder path and name for the pixel label data folder.
The ground truth LabelData property of this object contains the information in the
'PixellLabelData’' column. If you change the location of the pixel data file, you must
also update the related information in the groundTruth object. You can use the
changeFilePaths function to update the information.

View Exported Pixel Label Data

The labeler apps store the semantic segmentation ground truth as lossless PNG files, with
a uint8 value representing each category. The app uses the categorical function to
associate the uint8 values to a category. To view your pixel data, you can either overlay
the categories on images or create a datastore from the labeled images.

View Exported Pixel Label Data By Overlaying Categories on Images

Use the imread function with the categorical and labeloverlay functions. You
cannot view the pixel data directly from the categorical matrix. See “View Exported Pixel
Label Data” on page 7-4.

View Exported Pixel Label Data from Datastore of Labeled Images

Use the pixelLabelDatastore function to create a datastore from a set of labeled
images. Use the read function to read the pixel label data. See “Read and Display Pixel
Label Data” on page 7-5.

Examples

View Exported Pixel Label Data

Read image and corresponding pixel label data that was exported from a labeler app.
visiondatadir = fullfile(toolboxdir('vision'), 'visiondata');

buildingImage = imread(fullfile(visiondatadir, 'building', 'buildingl.JPG'));
buildinglLabels = imread(fullfile(visiondatadir, 'buildingPixelLabels"', 'Label 1.png'));

Define categories for each pixel value in buildinglLabels.

labellDs = [1,2,3,4];
labelcats = ["sky" "grass" "building" "sidewalk"];



How Labeler Apps Store Exported Pixel Labels

Construct a categorical matrix using the image and the definitions.

buildinglLabelCats = categorical(buildinglLabels, labelIDs, labelcats);

Display the categories overlaid on the image.

figure
imshow(labeloverlay(buildingImage,buildingLabelCats))

Read and Display Pixel Label Data

Overlay pixel label data on an image.
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Set the location of the image and pixel label data.

= fullfile(toolboxdir('vision'), 'visiondata');
fullfile(dataDir, 'building');
fullfile(dataDir, 'buildingPixelLabels"');

dataDir
imDir =
pxDir =

Create an image datastore and a pixel label datastore

imds = imageDatastore(imDir);

classNames = ["sky" "grass" "building" "sidewalk"];
pixelLabellID = [1 2 3 4];

pxds = pixellLabelDatastore(pxDir,classNames,pixellLabellD);

Read the image and pixel label data. read (pxs) returns a categorical matrix, C. The
element C(i,j) in the matrix is the categorical label assigned to the pixel at the location
1(i ).

I
C

read(imds);
read(pxds) ;

Display the label categories in C.
categories(C)

ans = 4x1 cell array
{"'sky" }
{'grass' }
{'building'}
{'sidewalk'}

Overlay and display the pixel label data onto the image.
B = labeloverlay(I,C);

figure
imshow(B)



See Also

See Also

Apps
Ground Truth Labeler | Image Labeler | Video Labeler

Objects
groundTruth | pixelLabelImageDatastore
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More About

. “Label Pixels for Semantic Segmentation” on page 7-88
. “Share and Store Labeled Ground Truth Data” on page 7-147
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Anchor Boxes for Object Detection

Object detection using deep learning neural networks provide a fast and accurate means
to predict the location and size of an object in an image. Ideally, the network returns valid
objects in a timely matter, regardless of the scale of the objects. The use of anchor boxes
improves the speed and efficiency for the detection portion of a deep learning neural
network framework.

What Is an Anchor Box?

Anchor boxes are a set of predefined bounding boxes of a certain height and width. These
boxes are defined to capture the scale and aspect ratio of specific object classes you want
to detect and are typically chosen based on object sizes in your training datasets. During
detection, the predefined anchor boxes are tiled across the image. The network predicts
the probability and other attributes, such as background, intersection over union (IoU)
and offsets for every tiled anchor box. The predictions are used to refine each individual
anchor box. You can define several anchor boxes, each for a different object size.

The network does not directly predict bounding boxes, but rather predicts the
probabilities and refinements that correspond to the tiled anchor boxes. The network
returns a unique set of predictions for every anchor box defined. The final feature map
represents object detections for each class. The use of anchor boxes enables a network to
detect multiple objects, objects of different scales, and overlapping objects.
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Anchor box 1 Anchor box 2

Tiled anchor box 1 Tiled anchor box 2

Advantage of Using Anchor Boxes

When using anchor boxes, you can evaluate all object predictions at once. Anchor boxes
eliminate the need to scan an image with a sliding window that computes a separate
prediction at every potential position. Examples of detectors that use a sliding window are
those that are based on aggregate channel features (ACF) or histogram of gradients
(HOG) features. An object detector that uses anchor boxes can process an entire image at
once, making real-time object detection systems possible.



Anchor Boxes for Object Detection

Sliding Window Detector
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Because a convolutional neural network (CNN) can process an input image in a
convolutional manner, a spatial location in the input can be related to a spatial location in
the output. This convolutional corrrespondence means that a CNN can extract image
features for an entire image at once. The extracted features can then be associated back
to their location in that image. The use of anchor boxes replaces and drastically reduces
the cost of the sliding window approach for extracting features from an image. Using
anchor boxes, you can design efficient deep learning object detectors to encompass all
three stages (detect, feature encode, and classify) of a sliding-window based object
detector.

How Do Anchor Boxes Work?
The position of an anchor box is determined by mapping the location of the network

output back to the input image. The process is replicated for every network output. The
result produces a set of tiled anchor boxes across the entire image.
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Each anchor box is tiled across the image. The number of network outputs equals the
number of tiled anchor boxes. The network produces predictions for all outputs.
Localization Errors and Refinement

The distance, or stride, between the tiled anchor boxes is a function of the amount of
downsampling present in the CNN. Downsampling factors between 4 and 16 are common.
These downsampling factors produce coarsely tiled anchor boxes, which can lead to
localization errors.
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To fix localization errors, deep learning object detectors learn offsets to apply to each
tiled anchor box refining the anchor box position and size.

Downsampling can be reduced by removing downsampling layers. To remove
downsampling layers, reduce the ‘Stride’ property in layers such as those created by a
convolution2dLayer or maxPooling2dLayer object. You can also choose a feature
extraction layer earlier in the network. Feature extraction layers which have higher
spatial resolution but can extract less semantic information compared to layers further
down the network.

Generate Object Detections

To generate the final object detections, tiled anchor boxes that belong to the background
class are removed, and the remaining ones are filtered by their confidence score. Anchor
boxes with the greatest confidence score are selected using nonmaximum suppression
(NMS). For more details about NMS, see the selectStrongestBboxMulticlass
function.
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Filter by class scores,
1 Class: airplane perform non-max suppression
Class: sailboat and intersection over union

Anchor Box Size
Multiscale processing enables the network to detect objects of varying size. To achieve

multiscale detection, you must specify anchor boxes of varying size, such as 64-by-64,
128-by-128, and 256-by-256. Specify sizes that closely represent the scale and aspect
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ratio of objects in your training data. For an example of estimating sizes, see “Estimate
Anchor Boxes Using Clustering” on page 1-51.

See Also

Related Examples

. “Create YOLO v2 Object Detection Network” on page 1-46
. “Object Detection Using Deep Learning”
. “Object Detection Using Faster R-CNN Deep Learning”

More About

. “YOLO v2 Basics” on page 7-16

. “Deep Learning in MATLAB” (Deep Learning Toolbox)

. “Pretrained Deep Neural Networks” (Deep Learning Toolbox)

7-15



7 Object Detection

YOLO v2 Basics

The you-only-look-once (YOLO) v2 object detector uses a single stage object detection
network. YOLO v2 is faster than other two-stage deep learning object detectors, such as
regions with convolutional neural networks (Faster R-CNNs).

The YOLO v2 model runs a deep learning CNN on an input image to produce network
predictions. The object detector decodes the predictions and generates bounding boxes.

b,

| o

™
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_YOLO CNN :
' Network

" Predictions

Predicting Objects in the Image

YOLO v2 uses anchor boxes to detect classes of objects in an image. For more details, see
“Anchor Boxes for Object Detection” on page 7-9.The YOLO v2 predicts these three
attributes for each anchor box:

* Intersection over union (IoU) — Predicts the objectness score of each anchor box.

* Anchor box offsets — Refine the anchor box position

* Class probability — Predicts the class label assigned to each anchor box.

The figure shows the predefined anchor box (the dotted line) and the refined location
after offsets are applied.
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Transfer Learning

With transfer learning, you can use a pretrained CNN as the feature extractor in a YOLO
v2 detection network. Use the yolov2Layers function to create a YOLO v2 detection
network from any pretrained CNN, for example MobileNet v2. For a list of pretrained

CNNs, see “Pretrained Deep Neural Networks” (Deep Learning Toolbox)

You can also design a custom model based on a pretrained image classification CNN. For

more details, see “Design a YOLO v2 Detection Network” on page 7-18.

7-17



7 Object Detection

7-18

Design a YOLO v2 Detection Network

You can design a custom YOLO v2 model layer by layer. The model starts with a feature
extractor network, which can be initialized from a pretrained CNN or trained from
scratch. The detection subnetwork contains a series of Conv, Batch norm, and ReLu
layers, followed by the transform and output layers, yolov2TransformLayer and
yolov20utputlLayer objects, respectively. yolov2TransformLayer transforms the
raw CNN output into a form required to produce object detections. yolov20utputLayer
defines the anchor box parameters and implements the loss function used to train the
detector.

Conwv Batch Relu Conwr
norm

You can also use the Deep Network Designer app to manually create a network. The
designer incorporates Computer Vision Toolbox YOLO v2 features.

Design a YOLO v2 Detection Network with a Reorg Layer

The reorganization layer (created using the yolov2ReorgLayer object) and the depth
concatenation layer ( created using the depthConcatenationlLayer object) are used to
combine low-level and high-level features. These layers improve detection by adding low-
level image information and improving detection accuracy for smaller objects. Typically,
the reorganization layer is attached to a layer within the feature extraction network
whose output feature map is larger than the feature extraction layer output.

Tip
* Adjust the 'Stride' property of the yolov2ReorgLayer object such that its output
size matches the input size of the depthConcatenationLayer object.

+ To simplify designing a network, use the interactive Deep Network Designer app and
the analyzeNetwork function.




YOLO v2 Basics

gionlaYe” iur"l" tpﬁt,l-ﬂ"‘

Pﬂnﬂdﬂc"“' 1ov2TERR® ) ov20u
0-0-0).-0-0—-0—0
xN
Conv Batch RelLu Conw
norm
yolov2Reorglayer

For more details on how to create this kind of network, see “Create YOLO v2 Object
Detection Network” on page 1-46.

Train an Object Detector and Detect Objects with a YOLO v2
Model

To learn how to train an object detector by using the YOLO deep learning technique with
a CNN, see the “Object Detection Using YOLO v2 Deep Learning” on page 1-30 example.

Code Generation

To learn how to generate CUDA® code using the YOLO v2 object detector (created using
the yolov20bjectDetector object) see “Code Generation for Object Detection Using
YOLO v2” on page 1-3.

Label Training Data for Deep Learning

You can use the Image Labeler, Video Labeler, or Ground Truth Labeler (available in
Automated Driving Toolbox) apps to interactively label pixels and export label data for
training. The apps can also be used to label rectangular regions of interest (ROIs) for
object detection, scene labels for image classification, and pixels for semantic
segmentation.
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Functions
analyzeNetwork | trainYOLOv20bjectDetector

Related Examples

. “Object Detection Using Deep Learning”

. “Object Detection Using YOLO v2 Deep Learning” on page 1-30

. “Code Generation for Object Detection Using YOLO v2” on page 1-3

More About

. “Anchor Boxes for Object Detection” on page 7-9

. “R-CNN, Fast R-CNN, and Faster R-CNN Basics” on page 7-22
. “Deep Learning in MATLAB” (Deep Learning Toolbox)

. “Pretrained Deep Neural Networks” (Deep Learning Toolbox)
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Object detection is the process of finding and classifying objects in an image. One deep
learning approach, regions with convolutional neural networks (R-CNN), combines
rectangular region proposals with convolutional neural network features. R-CNN is a two-
stage detection algorithm. The first stage identifies a subset of regions in an image that
might contain an object. The second stage classifies the object in each region.

Applications for R-CNN object detectors include:

* Autonomous driving
* Smart surveillance systems
* Facial recognition

Computer Vision Toolbox provides object detectors for the R-CNN, Fast R-CNN, and
Faster R-CNN algorithms.

Object Detection Using R-CNN Algorithms

Models for object detection using regions with CNNs are based on the following three
processes:

* Find regions in the image that might contain an object. These regions are called
region proposals.

» Extract CNN features from the region proposals.

» Classify the objects using the extracted features.

There are three variants of an R-CNN. Each variant attempts to optimize, speed up, or
enhance the results of one or more of these processes.

R-CNN

The R-CNN detector [2] first generates region proposals using an algorithm such as Edge
Boxes[1]. The proposal regions are cropped out of the image and resized. Then, the CNN
classifies the cropped and resized regions. Finally, the region proposal bounding boxes
are refined by a support vector machine (SVM) that is trained using CNN features.

Use the trainRCNNObjectDetector function to train an R-CNN object detector. The
function returns an rcnnObjectDetector object that detects objects in an image.
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Fast R-CNN

As in the R-CNN detector , the Fast R-CNN[3] detector also uses an algorithm like Edge
Boxes to generate region proposals. Unlike the R-CNN detector, which crops and resizes
region proposals, the Fast R-CNN detector processes the entire image. Whereas an R-
CNN detector must classify each region, Fast R-CNN pools CNN features corresponding
to each region proposal. Fast R-CNN is more efficient than R-CNN, because in the Fast R-
CNN detector, the computations for overlapping regions are shared.

Use the trainFastRCNNObjectDetector function to train a Fast R-CNN object
detector. The function returns a fastRCNNObjectDetector that detects objects from an

image.
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/ - _1 ROl pool % |
N2 CNN I O Classification
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‘ ROIs § I
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Feature Extractor Object Classification refinement layer

Faster R-CNN

The Faster R-CNN[4] detector. Instead of using an external algorithm like Edge Boxes,
Faster R-CNN adds a region proposal network (RPN) to generate region proposals
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directly in the network. The RPN uses “Anchor Boxes for Object Detection” on page 7-9.
Generating region proposals in the network is faster and better tuned to your data.

Use the trainFasterRCNNObjectDetector function to train a Faster R-CNN object
detector. The function returns a fasterRCNNObjectDetector that detects objects from
an image.

Classification
- Features

=|| ’i RO pool E—F
CNN I > O Classification
1 Layers
Bounding box
Region proposal network (RPN) refinement layer

Feature Extractor Object Classification

Comparison of R-CNN Object Detectors

This family of object detectors uses region proposals to detect objects within images. The
number of proposed regions dictates the time it takes to detect objects in an image. The
Fast R-CNN and Faster R-CNN detectors are designed to improve detection performance
with a large number of regions.

R-CNN Detector Description

trainRCNNObjectDetector * Less time to train an object detector, but detection
time is slow.

* Allows custom region proposal

trainFastRCNNObjectDetect
or

Allows custom region proposal

trainFasterRCNNObjectDete
ctor .

Optimal run-time performance

Does not support a custom region proposal
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Transfer Learning

You can use a pretrained convolution neural network (CNN) as the basis for an R-CNN
detector, also referred to as transfer learning. See “Pretrained Deep Neural Networks”
(Deep Learning Toolbox). Use one of the following networks with the
trainRCNNObjectDetector, trainFasterRCNNObjectDetector, or
trainFastRCNNObjectDetector functions. To use any of these networks you must
install the corresponding Deep Learning Toolbox™ model:

* 'alexnet!
* 'vggle'
* 'vggl9'

* 'resnet50'

* 'resnetlOl

* 'inceptionv3'

* 'googlenet’

* 'inceptionresnetv2'

* 'squeezenet'

You can also design a custom model based on a pretrained image classification CNN. See

the “Design an R-CNN, Fast R-CNN, and a Faster R-CNN Model” on page 7-25 section
and the Deep Network Designer app.

Design an R-CNN, Fast R-CNN, and a Faster R-CNN Model

You can design custom R-CNN models based on a pretrained image classification CNN.
You can also use the Deep Network Designer to build, visualize, and edit a deep
learning network.

1 The basic R-CNN model starts with a pretrained network. The last three classification
layers are replaced with new layers that are specific to the object classes you want to
detect.

For an example of how to create an R-CNN object detection network, see “Create R-
CNN Object Detection Network” on page 7-65

7-25



7 Object Detection

Classification layers

Features specific to data set

2 The Fast R-CNN model builds on the basic R-CNN model. A box regression layer is
added to improve on the position of the object in the image by learning a set of box
offsets. An ROI pooling layer is inserted into the network to pool CNN features for
each region proposal.

For an example of how to create a Fast R-CNN object detection network, see “Create
Fast R-CNN Object Detection Network” on page 7-69

0000

fullyConnectedLayer

feature extraction layer

roilnputLayer

. 3 rcnnBoxRegressionLayer

roiMaxPooling2dLayer

3  The Faster R-CNN model builds on the Fast R-CNN model. A region proposal network
is added to produce the region proposals instead of getting the proposals from an
external algorithm.
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For an example of how to create a Faster R-CNN object detection network, see
“Create Faster R-CNN Object Detection Network” on page 7-75

feature extraction layer roiMaxPooling2dLayer

rcnnBoxRegressionlLayer

.regionProposalLayer

/

*—0—0

rpnSoftmaxLayer rpnClassifierLayer

Convolution Layers

Label Training Data for Deep Learning

You can use the Image Labeler, Video Labeler, or Ground Truth Labeler (available in
Automated Driving Toolbox) apps to interactively label pixels and export label data for
training. The apps can also be used to label rectangular regions of interest (ROIs) for
object detection, scene labels for image classification, and pixels for semantic

segmentation.
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Semantic Segmentation Basics

Segmentation is essential for image analysis tasks. Semantic segmentation describes the
process of associating each pixel of an image with a class label, (such as flower, person,
road, sky, ocean, or car).

Applications for semantic segmentation include:

* Autonomous driving

* Industrial inspection

* Classification of terrain visible in satellite imagery
* Medical imaging analysis

Train a Semantic Segmentation Network
The steps for training a semantic segmentation network are as follows:
1. “Analyze Training Data for Semantic Segmentation” on page 7-33

2. “Create a Semantic Segmentation Network” on page 7-37

3. “Train A Semantic Segmentation Network” on page 7-41
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4. “Evaluate and Inspect the Results of Semantic Segmentation” on page 7-47

5. “Import Pixel Labeled Dataset For Semantic Segmentation” on page 7-54

Label Training Data for Semantic Segmentation

You can use the Image Labeler app to interactively label pixels and export the label data
for training. The app can also be used to label rectangular regions of interest (ROIs) and
scene labels for image classification.

See Also

Apps
Image Labeler

Functions
evaluateSemanticSegmentation | fcnLayers | pixelLabelDatastore |
segnetlLayers | semanticSegmentationMetrics | semanticseg
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Related Examples

“Semantic Segmentation Using Deep Learning”

“Label Pixels for Semantic Segmentation” on page 7-88

“Define Custom Pixel Classification Layer with Dice Loss” on page 1-64
“Semantic Segmentation Using Dilated Convolutions” on page 1-58

More About

“Deep Learning in MATLAB” (Deep Learning Toolbox)
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Semantic Segmentation Examples

Analyze Training Data for Semantic Segmentation

To train a semantic segmentation network you need a collection of images and its
corresponding collection of pixel labeled images. A pixel labeled image is an image where
every pixel value represents the categorical label of that pixel.

The following code loads a small set of images and their corresponding pixel labeled
images:

dataDir = fullfile(toolboxdir('vision'), 'visiondata');
imDir fullfile(dataDir, 'building');
pxDir fullfile(dataDir, 'buildingPixelLabels"');

Load the image data using an imageDatastore. An image datastore can efficiently
represent a large collection of images because images are only read into memory when
needed.

imds = imageDatastore(imDir);
Read and display the first image.
I = readimage(imds,1);

figure
imshow(I)
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Load the pixel label images using a pixelLabelDatastore to define the mapping
between label IDs and categorical names. In the dataset used here, the labels are "sky",
"grass”, "building", and "sidewalk". The label IDs for these classes are 1, 2, 3, 4,
respectively.

Define the class names.

classNames = ["sky" "grass" "building" "sidewalk"];
Define the label ID for each class name.

pixelLabelID = [1 2 3 4];

Create a pixelLabelDatastore.
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pxds = pixellLabelDatastore(pxDir,classNames,pixellLabellD);
Read the first pixel label image.
C = readimage(pxds,1);

The output C is a categorical matrix where C(1i, j) is the categorical label of pixel
I(1,73).

C(5,5)

ans = categorical
sky

Overlay the pixel labels on the image to see how different parts of the image are labeled.
B = labeloverlay(I,C);

figure
imshow(B)
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The categorical output format simplifies tasks that require doing things by class names.
For instance, you can create a binary mask of just the building:

buildingMask = C == 'building';

figure
imshowpair(I, buildingMask, 'montage')
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Create a Semantic Segmentation Network

Create a simple semantic segmentation network and learn about common layers found in
many semantic segmentation networks. A common pattern in semantic segmentation
networks requires the downsampling of an image between convolutional and ReLU layers,
and then upsample the output to match the input size. This operation is analogous to the
standard scale-space analysis using image pyramids. During this process however, a
network performs the operations using non-linear filters optimized for a specific set of
classes that you want to segment.

Create An Image Input Layer

A semantic segmentation network starts with an imageInputLayer, which defines the
smallest image size the network can process. Most semantic segmentation networks are
fully convolutional, which means they can process images that are larger than the
specified input size. Here, an image size of [32 32 3] is used for the network to process
64x64 RGB images.

inputSize = [32 32 31;
imgLayer = imagelnputlLayer(inputSize)

imgLayer =
ImagelInputLayer with properties:
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Name:
InputSize: [32 32 3]

Hyperparameters
DataAugmentation: 'none'’
Normalization: 'zerocenter'

Create Downsampling Network

Start with the convolution and ReLU layers. The convolution layer padding is selected
such that the output size of the convolution layer is the same as the input size. This makes
it easier to construct a network because the input and output sizes between most layers
remain the same as you progress through the network.

filterSize 3;

numFilters = 32;

conv = convolution2dlLayer(filterSize,numFilters, 'Padding',1);
relu = relulLayer();

The downsampling is performed using a max pooling layer. Create a max pooling layer to
downsample the input by a factor of 2 by setting the 'Stride' parameter to 2.

poolSize = 2;
maxPoolDownsample2x = maxPooling2dLayer(poolSize, 'Stride',2);

Stack the convolution, ReLU, and max pooling layers to create a network that
downsamples its input by a factor of 4.

downsamplinglLayers = [

conv

relu
maxPoolDownsample2x
conv

relu
maxPoolDownsample2x
1

downsamplinglLayers =
6x1 Layer array with layers:

b Convolution 32 3x3 convolutions with stride [1 1] and padding [1 1

" RelLU ReLU

" Max Pooling 2x2 max pooling with stride [2 2] and padding [0 O O ©
Convolution 32 3x3 convolutions with stride [1 1] and padding [1 1

A WN =
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5 e ReLU RelLU
6 t Max Pooling 2x2 max pooling with stride [2 2] and padding [@ 0 0 O

Create Upsampling Network

The upsampling is done using the tranposed convolution layer (also commonly referred to
as "deconv" or "deconvolution" layer). When a transposed convolution is used for
upsampling, it performs the upsampling and the filtering at the same time.

Create a transposed convolution layer to upsample by 2.

filterSize = 4;
transposedConvUpsample2x = transposedConv2dLayer(4,numFilters, 'Stride',2, 'Cropping',1)

The 'Cropping' parameter is set to 1 to make the output size equal twice the input size.

Stack the transposed convolution and relu layers. An input to this set of layers is
upsampled by 4.

upsamplinglLayers = [
transposedConvUpsample2x
relu
transposedConvUpsample2x
relu

]

upsamplinglLayers =
4x1 Layer array with layers:

1 b Transposed Convolution 32 4x4 transposed convolutions with stride [2
2 e RelLU RelLU
3 b Transposed Convolution 32 4x4 transposed convolutions with stride [2
4 t RelLU RelLU

Create A Pixel Classification Layer

The final set of layers are responsible for making pixel classifications. These final layers
process an input that has the same spatial dimensions (height and width) as the input
image. However, the number of channels (third dimension) is larger and is equal to
number of filters in the last transposed convolution layer. This third dimension needs to
be squeezed down to the number of classes we wish to segment. This can be done using a
1-by-1 convolution layer whose number of filters equal the number of classes, e.g. 3.

Create a convolution layer to combine the third dimension of the input feature maps down
to the number of classes.
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numClasses = 3;
convlxl = convolution2dLayer(1l,numClasses);

Following this 1-by-1 convolution layer are the softmax and pixel classification layers.
These two layers combine to predict the categorical label for each image pixel.

finallLayers = [
convlxl
softmaxLayer()
pixelClassificationLayer()

]

finallLayers =
3x1 Layer array with layers:

1 t Convolution 3 1x1 convolutions with stride [1 1] and p:
2 t Softmax softmax
3 t Pixel Classification Layer Cross-entropy loss

Stack All Layers

Stack all the layers to complete the semantic segmentation network.

net = [
imgLayer
downsamplinglLayers
upsamplinglLayers
finallLayers

]

net =
14x1 Layer array with layers:

1 b Image Input 32x32x3 images with 'zerocenter' normalizat:
2 v Convolution 32 3x3 convolutions with stride [1 1] and
3 " RelLU RelLU

4 b Max Pooling 2x2 max pooling with stride [2 2] and padd:
5 t Convolution 32 3x3 convolutions with stride [1 1] and |
6 " RelLU RelLU

7 b Max Pooling 2x2 max pooling with stride [2 2] and padd:
8 " Transposed Convolution 32 4x4 transposed convolutions with stride
9 " RelLU RelLU
10 " Transposed Convolution 32 4x4 transposed convolutions with stride
11 " RelLU RelLU
12 v Convolution 3 1x1 convolutions with stride [1 1] and p:
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13 t Softmax softmax
14 t Pixel Classification Layer Cross-entropy loss

This network is ready to be trained using trainNetwork from Deep Learning Toolbox™.

Train A Semantic Segmentation Network

Load the training data.

= fullfile(toolboxdir('vision'), 'visiondata', 'triangleImages');
fullfile(dataSetDir, 'trainingImages');
fullfile(dataSetDir, 'traininglLabels"');

imageDir
labelDir

dataSetDir
Create an image datastore for the images.

imds = imageDatastore(imageDir);

Create a pixelLabelDatastore for the ground truth pixel labels.
classNames = ["triangle", "background"];

labellIDs = [255 0];

pxds = pixellLabelDatastore(labelDir,classNames, labellIDs);

Visualize training images and ground truth pixel labels.

I = read(imds);

C = read(pxds);

I = imresize(I,5);

L = imresize(uint8(C),5);

imshowpair(I,L, 'montage')

7-41



7 Object Detection

Create a semantic segmentation network. This network uses a simple semantic
segmentation network based on a downsampling and upsampling design.

numFilters = 64;
filterSize = 3;

numClasses = 2;

layers = [

imagelInputlLayer([32 32 1])
convolution2dLayer(filterSize,numFilters, 'Padding', 1)
reluLayer()

maxPooling2dLayer(2, 'Stride"',?2)
convolution2dLayer(filterSize,numFilters, 'Padding', 1)
reluLayer()
transposedConv2dLayer(4,numFilters, 'Stride',2, 'Cropping',1);
convolution2dLayer(1l,numClasses);

softmaxLayer()

pixelClassificationLayer()

]

layers =
10x1 Layer array with layers:

1 t Image Input 32x32x1 images with 'zerocenter' normalizat:
2 t Convolution 64 3x3 convolutions with stride [1 1] and
3 Y RelLU RelLU

4 t Max Pooling 2x2 max pooling with stride [2 2] and padd:
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5 t Convolution 64 3x3 convolutions with stride [1 1] and |
6 v RelLU RelLU

7 t Transposed Convolution 64 4x4 transposed convolutions with stride
8 v Convolution 2 1x1 convolutions with stride [1 1] and p:
9 v Softmax softmax

10 n Pixel Classification Layer Cross-entropy loss

Setup training options.
opts = trainingOptions('sgdm',
'InitiallLearnRate', le-3,

'MaxEpochs',100, ...
'MiniBatchSize',64);

Create a pixel label image datastore that contains training data.
trainingData = pixellLabelImageDatastore(imds, pxds);
Train the network.

net = trainNetwork(trainingData, layers,opts);

Training on single GPU.
Initializing image normalization.

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learnin
| | | (hh:mm:ss) | Accuracy | Loss | Rate

I

| 1 | 1 | 00:00:00 | 31.86% | 0.6934 | 0.00!
| 17 | 50 | 00:00:03 | 94.52% | 0.5564 | 0.00!
| 34 | 100 | 00:00:07 | 95.25% | 0.4415 | 0.00:
| 50 | 150 | 00:00:11 | 95.14% | 0.3722 | 0.00:
| 67 | 200 | 00:00:14 | 94.52% | 0.3336 | 0.00!
| 84 | 250 | 00:00:18 | 95.25% | 0.2931 | 0.00!
| 100 | 300 | 00:00:21 | 95.14% | 0.2708 | 0.00:
I

Read and display a test image.

testImage = imread('triangleTest.jpg');
imshow(testImage)
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Segment the test image and display the results.

C = semanticseg(testImage,net);
B = labeloverlay(testImage,(C);
imshow(B)
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Improve the results

The network failed to segment the triangles and classified every pixel as "background".
The training appeared to be going well with training accuracies greater than 90%.
However, the network only learned to classify the background class. To understand why
this happened, you can count the occurrence of each pixel label across the dataset.

tbl = countEachLabel(trainingData)

tb1l=2x3 table

Name PixelCount ImagePixelCount
"triangle’ 10326 2.048e+05
"background’ 1.9447e+05 2.048e+05

The majority of pixel labels are for the background. The poor results are due to the class
imbalance. Class imbalance biases the learning process in favor of the dominant class.
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That's why every pixel is classified as "background". To fix this, use class weighting to
balance the classes. There are several methods for computing class weights. One common
method is inverse frequency weighting where the class weights are the inverse of the
class frequencies. This increases weight given to under-represented classes.

totalNumberOfPixels = sum(tbl.PixelCount);
frequency = tbl.PixelCount / totalNumberOfPixels;
classWeights = 1./frequency

classWeights = 2x1I

19.8334
1.0531

Class weights can be specified using the pixelClassificationLayer. Update the last
layer to use a pixelClassificationlLayer with inverse class weights.

layers(end) = pixelClassificationLayer('Classes',tbl.Name, 'ClassWeights',classWeights)
Train network again.
net = trainNetwork(trainingData, layers,opts);

Training on single GPU.
Initializing image normalization.

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learnin
| | | (hh:mm:ss) | Accuracy | Loss | Rate

I

[ 1| 1| 00:00:00 | 47.50% | 0.6925 | 0.00!
[ 17 | 50 | 00:00:04 | 19.67% | 0.6837 | 0.00!
[ 34 | 100 | 00:00:08 | 75.77% | 0.4433 | 0.00!
[ 50 | 150 | 00:00:12 | 85.00% | 0.4018 | 0.00!
[ 67 | 200 | 00:00:16 | 87.00% | 0.3568 | 0.00!
[ 84 | 250 | 00:00:20 | 88.03% | 0.3153 | 0.00!
[ 100 | 300 | 00:00:24 | 90.42% | 0.2890 | 0.00!
I

Try to segment the test image again.

C = semanticseg(testImage,net);
B = labeloverlay(testImage,C);
imshow(B)
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Using class weighting to balance the classes produced a better segmentation result.
Additional steps to improve the results include increasing the number of epochs used for
training, adding more training data, or modifying the network.

Evaluate and Inspect the Results of Semantic Segmentation

Import a test data set, run a pretrained semantic segmentation network, and evaluate and
inspect semantic segmentation quality metrics for the predicted results.

Import a Data Set

The triangleImages data set has 100 test images with ground truth labels. Define the
location of the data set.

dataSetDir = fullfile(toolboxdir('vision'), 'visiondata', 'triangleImages');
Define the location of the test images.

testImagesDir = fullfile(dataSetDir, 'testImages');
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Create an imageDatastore object holding the test images.
imds = imageDatastore(testImagesDir);

Define the location of the ground truth labels.
testLabelsDir = fullfile(dataSetDir, 'testlLabels');

Define the class names and their associated label IDs. The label IDs are the pixel values
used in the image files to represent each class.

classNames = ["triangle" "background"];
labelIDs = [255 0];

Create a pixelLabelDatastore object holding the ground truth pixel labels for the test
images.

pxdsTruth = pixellLabelDatastore(testLabelsDir,classNames, labelIDs);
Run a Semantic Segmentation Classifier

Load a semantic segmentation network that has been trained on the training images of
trianglelmages.

net
net

load('triangleSegmentationNetwork.mat');
net.net;

Run the network on the test images. Predicted labels are written to disk in a temporary
directory and returned as a pixelLabelDatastore object.

pxdsResults = semanticseg(imds,net,"WriteLocation",tempdir);

Running semantic segmentation network

* Processing 100 images.
* Progress: 100.00%

Evaluate the Quality of the Prediction

The predicted labels are compared to the ground truth labels. While the semantic
segmentation metrics are being computed, progress is printed to the Command Window.

metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTruth);

Evaluating semantic segmentation results
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Elapsed time: 00:00:01

Estimated time remaining: 00:00:00
* Finalizing... Done.

* Data set metrics:

GlobalAccuracy MeanAccuracy MeanIoU WeightedIoU MeanBFScore

0.90624 0.95085 0.61588 0.87529 0.40652
Inspect Class Metrics

Display the classification accuracy, the intersection over union (IoU), and the boundary
F-1 score for each class in the data set.

metrics.ClassMetrics

ans=2x3 table

Accuracy IoU MeanBFScore
triangle 1 0.33005 0.028664
background 0.9017 0.9017 0.78438

Display the Confusion Matrix

Display the confusion matrix.
metrics.ConfusionMatrix

ans=2x2 table

triangle background
triangle 4730 0
background 9601 88069

Visualize the normalized confusion matrix as a heat map in a figure window.

normConfMatData = metrics.NormalizedConfusionMatrix.Variables;
figure

h = heatmap(classNames, classNames,100*normConfMatData);
h.XLabel = 'Predicted Class';
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h.YLabel = 'True Class';
h.Title = 'Normalized Confusion Matrix (%)';

Normalized Confusion Matrix (%)

100

an
&0
triangle

To

&0

50

True Class

background

triangle background
Predicted Class

Inspect an Image Metric

Visualize the histogram of the per-image intersection over union (IoU).

imageIoU = metrics.ImageMetrics.MeanIoU;
figure

histogram(imageIoU)

title('Image Mean IoU')
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Find the test image with the lowest IoU.

[minIoU, worstImageIndex] = min(imagelol);
minIoU = minIoU(1);

worstImageIndex = worstImageIndex(1l);

Read the test image with the worst IoU, its ground truth labels, and its predicted labels
for comparison.

worstTestImage = readimage(imds,worstImagelIndex);

worstTruelLabels = readimage(pxdsTruth,worstImageIndex);
worstPredictedlLabels = readimage(pxdsResults,worstImageIndex);

Convert the label images to images that can be displayed in a figure window.
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worstTruelLabelImage = im2uint8(worstTrueLabels == classNames(1));
worstPredictedLabelImage = im2uint8(worstPredictedLabels == classNames(1l));

Display the worst test image, the ground truth, and the prediction.

worstMontage = cat(4,worstTestImage,worstTrueLabelImage,worstPredictedlLabelImage);
worstMontage = imresize(worstMontage,4, "nearest");

figure

montage(worstMontage, 'Size',[1 3])

title(['Test Image vs. Truth vs. Prediction. IoU = ' num2str(minIoU)])

Test Image vs. Truth vs. Prediction. loU = 0.55519

i |

Similarly, find the test image with the highest IoU.
[maxIoU, bestImageIndex] = max(imageIoU);

maxIoU = maxIoU(1l);
bestImageIndex = bestImageIndex(1l);

Repeat the previous steps to read, convert, and display the test image with the best IoU
with its ground truth and predicted labels.

bestTestImage = readimage(imds,bestImageIndex);
bestTruelLabels = readimage(pxdsTruth,bestImageIndex);
bestPredictedLabels = readimage(pxdsResults,bestImagelndex);

bestTrueLabelImage = im2uint8(bestTruelLabels == classNames(1l));
bestPredictedLabelImage = im2uint8(bestPredictedLabels == classNames(1l));

bestMontage = cat(4,bestTestImage,bestTrueLabelImage,bestPredictedLabellmage);
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bestMontage = imresize(bestMontage,4, "nearest");

figure
montage(bestMontage, 'Size',[1 3])
title(['Test Image vs. Truth vs. Prediction. IoU = ' num2str(maxIoU)])

Test Image vs. Truth vs. Prediction. loU = 0.72502

Specify Metrics to Evaluate
Optionally, list the metric(s) you would like to evaluate using the ‘Metrics' parameter.

Define the metrics to compute.

evaluationMetrics = ["accuracy" "iou"];

Compute these metrics for the triangleImages test data set.

metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTruth,"Metrics",evaluationMetri

Evaluating semantic segmentation result]
Elapsed time: 00:00:00

Estimated time remaining: 00:00:00

* Finalizing... Done.

* Data set metrics:

MeanAccuracy MeanIoU

0.95085 0.61588

Display the chosen metrics for each class.

7-53



7 Object Detection

7-54

metrics.ClassMetrics

ans=2x2 table

Accuracy IoU
triangle 1 0.33005
background 0.9017 0.9017

Import Pixel Labeled Dataset For Semantic Segmentation

This example shows you how to import a pixel labeled dataset for semantic segmentation
networks.

A pixel labeled dataset is a collection of images and a corresponding set of ground truth
pixel labels used for training semantic segmentation networks. There are many public
datasets that provide annotated images with per-pixel labels. To illustrate the steps for
importing these types of datasets, the example uses the CamVid dataset from the
University of Cambridge [1].

The CamVid dataset is a collection of images containing street level views obtained while
driving. The dataset provides pixel-level labels for 32 semantic classes including car,
pedestrian, and road. The steps shown to import CamVid can be used to import other
pixel labeled datasets.

Download CamVid Dataset
Download the CamVid image data from the following URLs:

imageURL
labelURL

"http://web4d.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/files/701 Stillsl
"http://web4d.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/data/LabeledAppr

outputFolder = fullfile(tempdir, 'CamVid');
imageDir = fullfile(outputFolder, 'images');
labelDir = fullfile(outputFolder, 'labels"');
if ~exist(outputFolder, 'dir')

disp('Downloading 557 MB CamVid data set...');

unzip(imageURL, imageDir);
unzip(labelURL, labelDir);
end
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Note: Download time of the data depends on your internet connection. The commands
used above will block MATLAB® until the download is complete. Alternatively, you can
use your web browser to first download the dataset to your local disk. To use the file you
downloaded from the web, change the outputFolder variable above to the location of
the downloaded file.

CamVid Pixel Labels

The CamVid data set encodes the pixel labels as RGB images, where each class is
represented by an RGB color. Here are the classes the dataset defines along with their
RGB encodings.

classNames = [
"Animal",
"Archway",
"Bicyclist",
"Bridge",
"Building",
"Car", ..
“"CartLuggagePram",
"Child",
"Column_Pole",
"Fence",
"LaneMkgsDriv",
"LaneMkgsNonDriv",
"Misc Text",
"MotorcycleScooter",
"OtherMoving",
"ParkingBlock",
"Pedestrian",
"Road", ...
"RoadShoulder",
"Sidewalk",
"SignSymbol",
"Sky", ...
"SUVPickupTruck",
"TrafficCone", ...
"TrafficLight",
"Train",
"Tree",
"Truck Bus",
"Tunnel",
"VegetationMisc",
"Wall"];
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Define the mapping between label indices and class names such that classNames (k)
corresponds to labelIDs (k, :).

labellIDs = [
064 128 064; % "Animal"
192 000 128; % "Archway"
000 128 192; % "Bicyclist"
000 128 064; % "Bridge"
128 000 000; % "Building"
064 000 128; % "Car"
064 000 192; % "CartLuggagePram"
192 128 064; % "Child"
192 192 128; % "Column_Pole"
064 064 128; % "Fence"
128 000 192; % "LaneMkgsDriv"
192 000 064; % "LaneMkgsNonDriv"
128 128 064; % "Misc_Text"
192 000 192; % "MotorcycleScooter"
128 064 064; % "OtherMoving"
064 192 128; % "ParkingBlock"
064 064 000; % "Pedestrian"
128 064 128; % "Road"
128 128 192; % "RoadShoulder"
000 000 192; % "Sidewalk"
192 128 128; % "SignSymbol"
128 128 128; % "Sky"
064 128 192; % "SUVPickupTruck"
000 000 064; % "TrafficCone"
000 064 064; % "TrafficLight"
192 064 128; % "Train"
128 128 000; % "Tree"
192 128 192; % "Truck Bus"
064 000 064; % "Tunnel"
192 192 000; % "VegetationMisc"
064 192 000]; % "Wall"

Note that other datasets have different formats of encoding data. For example, the
PASCAL VOC [2] dataset uses numeric label IDs between 0 and 21 to encode their class
labels.

Visualize the pixel labels for one of the CamVid images.

labels = imread(fullfile(labelDir, '0001TP_ 006690 L.png'));
figure
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imshow(labels)

% Add colorbar to show class to color mapping.

N = numel(classNames);

ticks = 1/(N*2):1/N:1;

colorbar('TickLabels',cellstr(classNames), 'Ticks',ticks, 'TickLength',0Q, 'TickLabelInter]
colormap(labellDs./255)

‘Wall
VegetationMisc
Tunnel
Truck_Bus

Tree

Train

TrafficLight
TrafficCone
SUVPickup Truck
Sky

SignSymbal
Sidewalk
RoadShoulder
Road

Pedestrian
ParkingBlock
OtherMoving
MotorcycleScooter
Misc_Text
LaneMkgsMonDriv
LaneMkgsDriv
Fence
Column_Paole
Child
CartLuggagePram
Car

Building

Bridge

Bicyclist

Archway

Animal

Load CamVid Data

A pixel labeled dataset can be loaded using an imageDatastore and a
pixelLabelDatastore.
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Create an imageDatastore to load the CamVid images.

imds = imageDatastore(fullfile(imageDir,'701 StillsRaw full'));
Create a pixelLabelDatastore to load the CamVid pixel labels.

pxds = pixellLabelDatastore(labelDir,classNames, labelIDs);

Read the 10th image and corresponding pixel label image.

I
C

readimage(imds,10);
readimage(pxds,10);

The pixel label image is returned as a categorical array where C(1, j) is the categorical
label assigned to pixel I(1i,j). Display the pixel label image on top of the image.

B = labeloverlay(I,C, 'Colormap',labelIDs./255);
figure
imshow(B)

% Add a colorbar.

N = numel(classNames);

ticks = 1/(N*2):1/N:1;

colorbar('TickLabels',cellstr(classNames), 'Ticks', ticks, 'TickLength',0, 'TickLabelInter;
colormap(labelIDs./255)
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Wall
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Tunnel
Truck_Bus

Tree

Train
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Sky

SignSymbal
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ParkingBlock
OtherMoving
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LaneMkgsDriv
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Building

Bridge
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Archway

Animal

Undefined or Void Labels

It is common for pixel labeled datasets to include "undefined" or "void" labels. These are
used to designate pixels that were not labeled. For example, in CamVid, the label ID [0 0
0] is used to designate the "void" class. Training algorithms and evaluation algorithms are
not expected to include these labels in any computations.

The "void" class need not be explicitly named when using pixelLabelDatastore. Any
label ID that is not mapped to a class name is automatically labeled "undefined" and is
excluded from computations. To see the undefined pixels, use isundefined to create a
mask and then display it on top of the image.
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undefinedPixels = isundefined(C);

B = labeloverlay(I,undefinedPixels);
figure

imshow(B)

title('Undefined Pixel Labels')

Undefined Pixel Labels

] }j. ¥

Combine Classes

When working with public datasets, you may need to combine some of the classes to
better suit your application. For example, you may want to train a semantic segmentation
network that segments a scene into 4 classes: road, sky, vehicle, pedestrian, and
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background. To do this with the CamVid dataset, group the label IDs defined above to fit
the new classes. First, define the new class names.

newClassNames = ["road","sky","vehicle","pedestrian", "background"];
Next, group label IDs using a cell array of M-by-3 matrices.

groupedLabelIDs = {

% road

[

128 064 128; % "Road"

128 000 192; % "LaneMkgsDriv"
192 000 064; % "LaneMkgsNonDriv"
000 000 192; % "Sidewalk"

064 192 128; % "ParkingBlock"
128 128 192; % "RoadShoulder"

1

% "sky"

[

128 128 128; ... % "Sky"

1

% "vehicle"

[

064 000 128; % "Car"

064 128 192; % "SUVPickupTruck"
192 128 192; % "Truck Bus"

192 064 128; % "Train"

000 128 192; % "Bicyclist"

192 000 192; % "MotorcycleScooter"
128 064 064; % "OtherMoving"

% "pedestrian"
[

064 064 000; "Pedestrian”

192 128 064; % "Child"

064 000 192; % "CartLuggagePram"
064 128 064; % "Animal"

1

% "background"

[

128 128 000; % "Tree"
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192 192 000; % "VegetationMisc"
192 128 128; % "SignSymbol"
128 128 064; % "Misc Text"
000 064 064; % "TrafficLight"
064 064 128; % "Fence"

192 192 128; % "Column_Pole"
000 000 064; % "TrafficCone"
000 128 064; % "Bridge"

128 000 000; % "Building"

064 192 000; % "Wall"

064 000 064; % "Tunnel"

192 000 128; % "Archway"

]
};

Create a pixelLabelDatastore using the new class and label IDs.

pxds = pixellLabelDatastore(labelDir,newClassNames,groupedLabellIDs);

Read the 10th pixel label image and display it on top of the image.

C = readimage(pxds,10);

cmap = jet(numel(newClassNames));

B = labeloverlay(I,C, 'Colormap',cmap);
figure

imshow(B)

% add colorbar

N = numel(newClassNames) ;

ticks = 1/(N*2):1/N:1;
colorbar('TickLabels',cellstr(newClassNames), 'Ticks',ticks, 'TickLength',@, 'TickLabelIn-
colormap(cmap)
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background

pedeslrian

vehicle

sky

road

The pixelLabelDatastore with the new class names can now be used to train a
network for the 4 classes without having to modify the original CamVid pixel labels.
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Faster R-CNN Examples

Create R-CNN Object Detection Network

This example shows how to modify a pretrained ResNet-50 network into an R-CNN object
detection network. The network created in this example can be trained using
trainRCNNObjectDetector.

% Load pretrained ResNet-50.
net = resnet50();

% Convert network into a layer graph object to manipulate the layers.
lgraph = layerGraph(net);

The procedure to convert a network into an R-CNN network is the same as the transfer
learning workflow for image classification. You replace the last 3 classification layers with
new layers that can support the number of object classes you want to detect, plus a
background class.

In ResNet-50, the last three layers are named fc1000, fc1000 softmax, and
ClassificationLayer fc1000. Display the network, and zoom in on the section of the
network you will modify.

figure

plot(lgraph)
ylim([-5 16])
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% Remove the the last 3 layers.
layersToRemove = {
'fcleoo'
'fcleOO softmax'
'ClassificationLayer fcl000'
+

lgraph = removelLayers(lgraph, layersToRemove);
% Display the results after removing the layers.
figure

plot(lgraph)
ylim([-5 16])

7-66



Faster R-CNN Examples

16

14

12

10
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number of objects the network should detect plus an additional background class. During
detection, the network processes cropped image regions and classifies them as belonging
to one of the object classes or background.

% Specify the number of classes the network should classify.
numClassesPlusBackground = 2 + 1;

% Define new classfication layers
newLayers = [
fullyConnectedLayer(numClassesPlusBackground, 'Name',
softmaxLayer('Name', 'rcnnSoftmax"')

classificationLayer('Name',

'rcnnClassification')

'rcnnFC')
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1;

% Add new layers
lgraph = addLayers(lgraph, newLayers);

% Connect the new layers to the network.
lgraph = connectlLayers(lgraph, 'avg pool', ‘'rcnnFC');

% Display the final R-CNN network. This can be trained using trainRCNNObjectDetector.
figure

plot(lgraph)

ylim([-5 16])
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Create Fast R-CNN Object Detection Network

This example builds upon the “Create R-CNN Object Detection Network” on page 7-65

example above. It transforms a pretrained ResNet-50 network into a Fast R-CNN object
detection network by adding an ROI pooling layer and a bounding box regression layer.
The Fast R-CNN network can then be trained using trainFastRCNNObjectDetector.

Create R-CNN Network

Start by creating an R-CNN network that forms the basis of Fast R-CNN. The “Create R-
CNN Object Detection Network” on page 7-65 example explains this section of code in
detail.

% Load pretrained ResNet-50.
net = resnet50;
lgraph = layerGraph(net);

% Remove the the last 3 layers from ResNet-50.
layersToRemove = {
'fcl1000'
'fcl000 softmax'
'ClassificationLayer fcl0o00'
}i

lgraph = removelLayers(lgraph, layersToRemove);

% Specify the number of classes the network should classify.
numClasses = 2;
numClassesPlusBackground = numClasses + 1;

% Define new classification layers.
newlLayers = [

fullyConnectedLayer(numClassesPlusBackground, 'Name', 'rcnnFC'")
softmaxLayer('Name', 'rcnnSoftmax')
classificationLayer('Name', 'rcnnClassification')

1;

% Add new layers.
lgraph = addLayers(lgraph, newlLayers);

% Connect the new layers to the network.
lgraph = connectlLayers(lgraph, 'avg pool', ‘'rcnnFC');
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Add Bounding Box Regression Layer

Add a box regression layer to learn a set of box offsets to apply to the region proposal
boxes. The learned offsets transform the region proposal boxes so that they are closer to
the original ground truth bounding box. This transformation helps improve the
localization performance of Fast R-CNN.

The box regression layers are composed of a fully connected layer followed by an R-CNN
box regression layer. The fully connected layer is configured to output a set of 4 box
offsets for each class. The background class is excluded because the background
bounding boxes are not refined.

% Define the number of outputs of the fully connected layer.
numOutputs = 4 * numClasses;

% Create the box regression layers.
boxRegressionLayers = [
fullyConnectedLayer (numOutputs, 'Name', 'rcnnBoxFC")
rcnnBoxRegressionLayer('Name', 'rcnnBoxDeltas')
1;

% Add the layers to the network
lgraph = addLayers(lgraph, boxRegressionLayers);

The box regression layers are typically connected to same layer the classification branch
is connected to.

% Connect the regression layers to the layer named 'avg pool'.
lgraph = connectlLayers(lgraph, 'avg pool', 'rcnnBoxFC');

% Display the classification and regression branches of Fast R-CNN.
figure

plot(lgraph)

ylim([-5 16])
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Add ROI Max Pooling Layer

The next step is to choose which layer in the network to use as the feature extraction
layer. This layer will be connected to the ROI max pooling layer which will pool features
for classifying the pooled regions. Selecting a feature extraction layer requires empirical
evaluation. For ResNet-50, a typical feature extraction layer is the output of the 4-th block
of convolutions, which corresponds to the layer named activation40 relu.

featureExtractionLayer = 'activation 40 relu';
figure

plot(lgraph)
ylim([30 42])
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In order to insert the ROI max pooling layer, first disconnect the layers attached to the
feature extraction layer: resba branch2a and resba branchl.

% Disconnect the layers attached to the selected feature extraction layer.
lgraph = disconnectlLayers(lgraph, featureExtractionlLayer, 'res5a branch2a');
lgraph = disconnectlLayers(lgraph, featureExtractionLayer, 'res5a branchl');

% Add ROI max pooling layer.
outputSize [14 14]

outputSize 1x2

14 14
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roiPool = roiMaxPooling2dLayer(outputSize, 'Name', 'roiPool");
lgraph = addLayers(lgraph, roiPool);

% Connect feature extraction layer to ROI max pooling layer.
lgraph = connectlLayers(lgraph, 'activation 40 relu','roiPool/in"');

% Connect the output of ROI max pool to the disconnected layers from above.
lgraph = connectlLayers(lgraph, 'roiPool', 'res5a branch2a');
lgraph = connectlLayers(lgraph, 'roiPool','res5a branchl');

% Show the result after adding and connecting the ROI max pooling layer.
figure

plot(lgraph)

ylim([30 42])
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Finally, connect the ROI input layer to the second input of the ROI max pooling layer.

% Add ROI input layer.
roilnput = roiInputLayer('Name', 'roiInput');
lgraph = addLayers(lgraph, roilnput);

% Connect ROI input layer to the 'roi' input of the ROI max pooling layer.
lgraph = connectlLayers(lgraph, 'roilnput','roiPool/roi');

% Show the resulting faster adding and connecting the ROI input layer.
figure

plot(lgraph)

ylim([30 42])
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The network is ready to be trained using trainFastRCNNObjectDetector.

Create Faster R-CNN Object Detection Network

This example builds upon the “Create Fast R-CNN Object Detection Network” on page 7-
69 example above. It transforms a pretrained ResNet-50 network into a Faster R-CNN
object detection network by adding an ROI pooling layer, a bounding box regression layer,
and a region proposal network (RPN). The Faster R-CNN network can then be trained
using trainFasterRCNNObjectDetector.
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Create Fast R-CNN Network

Start by creating Fast R-CNN, which forms the basis of Faster R-CNN. The “Create Fast R-
CNN Object Detection Network” on page 7-69 example explains this section of code in
detail.

% Load a pretrained ResNet-50.
net = resnet50;
lgraph = layerGraph(net);

% Remove the last 3 layers.
layersToRemove = {
'fcleo0'
'fcl000 softmax'
'ClassificationLayer fcl000'
b

lgraph = removelLayers(lgraph, layersToRemove);

% Specify the number of classes the network should classify.
numClasses = 2;
numClassesPlusBackground = numClasses + 1;

% Define new classification layers.
newLayers = [

fullyConnectedLayer(numClassesPlusBackground, ‘'Name', ‘'rcnnFC")
softmaxLayer('Name', 'rcnnSoftmax"')
classificationLayer('Name', 'rcnnClassification')

I;

% Add new object classification layers.
lgraph = addLayers(lgraph, newLayers);

% Connect the new layers to the network.
lgraph = connectlLayers(lgraph, 'avg pool', ‘'rcnnFC');

% Define the number of outputs of the fully connected layer.
numOutputs = 4 * numClasses;

% Create the box regression layers.
boxRegressionLayers = [
fullyConnectedLayer (numOutputs, 'Name', 'rcnnBoxFC")
rcnnBoxRegressionLayer('Name', 'rcnnBoxDeltas')
1;
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% Add the layers to the network.
lgraph = addLayers(lgraph, boxRegressionLayers);

% Connect the regression layers to the layer named 'avg pool'.
lgraph = connectlLayers(lgraph, 'avg pool', 'rcnnBoxFC');

% Select a feature extraction layer.
featureExtractionLayer = 'activation 40 relu';

% Disconnect the layers attached to the selected feature extraction layer.
lgraph disconnectlLayers(lgraph, featureExtractionLayer, 'res5a branch2a');
lgraph disconnectLayers(lgraph, featureExtractionLayer, 'res5a branchl');

% Add ROI max pooling layer.

outputSize = [14 14];

roiPool = roiMaxPooling2dLayer(outputSize, ‘Name', 'roiPool");
lgraph = addLayers(lgraph, roiPool);

% Connect feature extraction layer to ROI max pooling layer.
lgraph = connectlLayers(lgraph, featureExtractionLayer, 'roiPool/in"');

% Connect the output of ROI max pool to the disconnected layers from above.
lgraph = connectlLayers(lgraph, 'roiPool', 'res5a branch2a');
lgraph = connectlLayers(lgraph, 'roiPool','res5a branchl');

Add Region Proposal Network (RPN)

Faster R-CNN uses a region proposal network (RPN) to generate region proposals. An
RPN produces region proposals by predicting the class, “object” or “background”, and
box offsets for a set of predefined bounding box templates known as "anchor boxes".
Anchor boxes are specified by providing their size, which is typically determined based on
a priori knowledge of the scale and aspect ratio of obhjects in the training dataset.

Learn more about “Anchor Boxes for Object Detection” on page 7-9.

Define the anchor boxes and create a regionProposallLayer.

% Define anchor boxes.
anchorBoxes = [

16 16

32 16

16 32

I;
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% Create the region proposal layer.
proposallLayer = regionProposallLayer(anchorBoxes, ‘Name', 'regionProposal');

lgraph = addLayers(lgraph, proposallLayer);

Add the convolution layers for RPN and connect it to the feature extraction layer selected
above.

% Number of anchor boxes.
numAnchors = size(anchorBoxes,1);

% Number of feature maps in coming out of the feature extraction layer.
numFilters = 1024;

rpnLayers = [
convolution2dLayer(3, numFilters, 'padding',[1 1], 'Name', 'rpnConv3x3")
reluLayer('Name', 'rpnRelu')
I;

lgraph = addLayers(lgraph, rpnLayers);

% Connect to RPN to feature extraction layer.
lgraph = connectlLayers(lgraph, featureExtractionLayer, 'rpnConv3x3');

Add the RPN classification output layers. The classification layer classifies each anchor as
"object" or "background".

% Add RPN classification layers.

rpnClsLayers = [
convolution2dLayer(1l, numAnchors*2, 'Name', 'rpnConvlx1lClsScores"')
rpnSoftmaxLayer('Name', 'rpnSoftmax')
rpnClassificationLayer('Name', 'rpnClassification')
1;

lgraph = addLayers(lgraph, rpnClsLayers);

% Connect the classification layers to the RPN network.
lgraph = connectlLayers(lgraph, 'rpnRelu', 'rpnConvlx1ClsScores');

Add the RPN regression output layers. The regression layer predicts 4 box offsets for
each anchor box.

% Add RPN regression layers.

rpnReglLayers = [
convolution2dLayer(1l, numAnchors*4, 'Name', 'rpnConvlxlBoxDeltas')
rcnnBoxRegressionLayer('Name', 'rpnBoxDeltas');
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1;
lgraph = addLayers(lgraph, rpnReglLayers);

% Connect the regression layers to the RPN network.
lgraph = connectlLayers(lgraph, 'rpnRelu', 'rpnConvlxlBoxDeltas');

Finally, connect the classification and regression feature maps to the region proposal
layer inputs, and the ROI pooling layer to the region proposal layer output.

% Connect region proposal network.
lgraph = connectlLayers(lgraph, 'rpnConvlx1ClsScores', 'regionProposal/scores');
lgraph = connectlLayers(lgraph, 'rpnConvlxlBoxDeltas', 'regionProposal/boxDeltas');

% Connect region proposal layer to roi pooling.
lgraph = connectlLayers(lgraph, 'regionProposal', 'roiPool/roi');

% Show the network after adding the RPN layers.
figure

plot(lgraph)

ylim([30 42])
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The network is ready to be trained using trainFasterRCNNObjectDetector.
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Train Object Detector or Semantic Segmentation
Network from Ground Truth Data

You can use the Image Labeler, Video Labeler, and Ground Truth Labeler (requires
Automated Driving Toolbox) apps, along with Computer Vision Toolbox objects and
functions, to train algorithms from ground truth data. First, use your labeling app to
interactively label ground truth data in a video, image sequence, image collection, or
custom data source. Then, use the ground truth data to create algorithm training data.
For object detectors, use the objectDetectorTrainingData function. For semantic
segmentation networks, use the pixellLabelTrainingData function.

Video, image sequence, image collection,
af custom data source
(groundTruthbatalource)

—

. "_ﬁ e Labeling app
L d

. | groundTruth
object

Create training data Create training data
.FO.VGb,"Efde-rer.‘tor objectletectorTraininglata pixelLabelTraininglata  forsemantic
segmentation network

Training data . Data source

Train detector i I
f trainRCHNNObjectDetector, f Train ne?'qu
semantlcseq

trainFastRCHNNOb jectletactor
trainACFdbjectletector ate, ..

1 Load data for labeling:

7-81



7 Object Detection

7-82

+ Image Labeler — Load an image collection from a file or ImageDatastore
object into the app.

* Video Labeler or Ground Truth Labeler — Load a video, image sequence, or a
custom data source into the app

Label data and select an automation algorithm: Create ROI and scene labels
within the app. For more details, see:

* Image Labeler — “Get Started with the Image Labeler” on page 7-100
* Video Labeler — “Get Started with the Video Labeler” on page 7-109

¢  Ground Truth Labeler — “Get Started with the Ground Truth Labeler”
(Automated Driving Toolbox)

You can choose from one of the built-in algorithms or create your own custom
algorithm to label objects in your data. To learn how to create your own automation
algorithm, see “Create Automation Algorithm for Labeling” on page 7-84.

Export labels: After labeling your data, you can export the labels to the workspace
or save them to a file. The labels are exported as a groundTruth object. If your data
source consists of multiple image collections, label the entire set of image collections
to obtain an array of groundTruth objects. For details about sharing groundTruth
objects, see “Share and Store Labeled Ground Truth Data” on page 7-147.

Create training data: To create training data from the groundTruth object, use
one of these functions:

* Training data for object detectors — Use the objectDetectorTrainingData
function.

* Training data for semantic segmentation networks — Use the
pixelLabelTrainingData function.

Sample the ground truth data by specifying a sampling factor. Sampling mitigates
overtraining an object detector on similar samples. For objects created using a video
file or custom data source, the objectDetectorTrainingData and
pixelLabelTrainingData functions write images to disk for groundTruth.

Train algorithm:

* Object detectors — Use one of several Computer Vision Toolbox object detectors.
See “Object Detection Using Features”. For object detectors specific to automated
driving, see the Automated Driving Toolbox object detectors listed in “Visual
Perception” (Automated Driving Toolbox).
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* Semantic segmentation network — Use the semanticseg function. For more
details on training a semantic segmentation network, see “Semantic Segmentation
Basics” on page 7-30 and the “Object Detection Using Deep Learning” example.

See Also

Apps
Ground Truth Labeler | Image Labeler | Video Labeler

Functions

groundTruth | groundTruthDataSource | objectDetectorTrainingData |
pixelLabelTrainingData | semanticseg | trainACFObjectDetector |
trainFasterRCNNObjectDetector | trainRCNNObjectDetector |
trainRCNNObjectDetector

More About

. “Get Started with the Image Labeler” on page 7-100

. “Get Started with the Video Labeler” on page 7-109

. “Get Started with the Ground Truth Labeler” (Automated Driving Toolbox)
. “Create Automation Algorithm for Labeling” on page 7-84

. “Semantic Segmentation Basics” on page 7-30

. “Object Detection Using Deep Learning”
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Create Automation Algorithm for Labeling

7-84

The Image Labeler, Video Labeler, and Ground Truth Labeler (requires Automated
Driving Toolbox) apps enable you to label ground truth data in an image collection, video,
or image sequence. You can use an automation algorithm to automatically label your data
by creating and importing a custom automation algorithm.

Create Custom Label Automation Algorithm for Labeling App

The vision.labeler.AutomationAlgorithm class enables you to define a custom
label automation algorithm for use in the labeling apps. You can use the class to define
the interface used by the app to run an automation algorithm.

To define and use a custom automation algorithm with your loaded data source:

1

Create the automation folder: Create a +vision/+labeler/ folder within a
folder that is on the MATLAB path. For example, if the folder /local/MyProject is
on the MATLAB path, then create the +vision/+labeler/ folder hierarchy as
follows:

projectFolder = fullfile('local', 'MyProject');
automationFolder = fullfile('+vision', '+labeler');
mkdir(projectFolder,automationFolder)

Define a class that inherits from the AutomationAlgorithm class: At the
MATLAB command prompt, enter the appropriate command to open the labeling app
you want: imagelLabeler, videoLabeler, or groundTruthLabeler. Then click
Select Algorithm > Add Algorithm > Create new algorithm to open the
vision.labeler.AutomationAlgorithm class template. Define your algorithm by
following the instructions in the header and comments in the class.

Save the file: Save the file to the +vision/+labeler package folder to use your
custom algorithm from within the app. To add a folder to the path, use the addpath
function.

Refresh the algorithm list: To start using your custom algorithm, refresh the
algorithm list for it to display in the list of algorithms. In the app, click Select
Algorithm > Refresh list in the app.
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Import Custom Algorithm into Labeling App

Alternatively, to import your custom algorithm, click Select Algorithm > Add
Algorithm > Import Algorithm and then refresh the list.

Custom Algorithm Execution

The properties and methods in your automation algorithm class define how the class
interacts with the Automate button in the labeler app.

When you click Automate, the app checks each label definition in the ROI Label
Definition and Scene Label Definition panes by using the checkLabelDefinition
method defined in your custom algorithm. Label definitions that return true are retained
for automation. Label definitions that return false are disabled and not included. Use
the checkLabelDefinition method to choose a subset of label definitions that are valid
for your custom algorithm. For example, if your custom algorithm is a semantic
segmentation algorithm, use this method to return false for label definitions that are not
of type PixelLabel.

| ROl Labe! Definition | ROH Label Definition

&l [& [® \ n & &8
Labi Cirbda b Aftribale

b Vhicle i v Vahecle
b Hoad | J
b Bridge i:: ¢ Bridge
b Sky | d
b Trees Bl 4

N

I% checkLabellefinition()

ot
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After you select the algorithm, click Automate to start an automation session. Then, click
Settings, which enables you to modify custom app settings. To control the Settings
options, use the settingsDialog method.

& .
Seliings ﬁ settingsDialog()

When you first run the algorithm, the app calls the checkSetup method to check if it is
ready for execution. If the method returns true, the app calls the initialize method
and then the run method on every image selected for automation. Then, the app calls the
terminate method.

Use the checkSetup method to check whether all conditions needed for your custom
algorithm are set up correctly. For example, before running the algorithm, check that the
scene contains at least one ROI label before running the algorithm. Use the initialize
method to initialize the state for your custom algorithm by using the image. Use the run
method to implement the core of the algorithm that computes and returns labels for each
image. Use the terminate method to clean up or terminate the state after the algorithm
runs.

E — checkSatup() exit

e
execute algorithm

initialize

Each frame

Autolabels are drawn
in image display

run
terminate '
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See Also

Apps
Ground Truth Labeler | Image Labeler | Video Labeler

Functions
groundTruth | groundTruthDataSource |
vision.labeler.AutomationAlgorithm | vision.labeler.mixin.Temporal

Related Examples

. “Automate Ground Truth Labeling of Lane Boundaries” (Automated Driving Toolbox)
. “Automate Ground Truth Labeling for Semantic Segmentation” (Automated Driving
Toolbox)

. “Automate Attributes of Labeled Objects” (Automated Driving Toolbox)

More About

. “Get Started with the Image Labeler” on page 7-100

. “Get Started with the Video Labeler” on page 7-109

. “Get Started with the Ground Truth Labeler” (Automated Driving Toolbox)
. “Temporal Automation Algorithms” on page 7-139
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Label Pixels for Semantic Segmentation

7-88

The Image Labeler, Video Labeler, and Ground Truth Labeler (requires Automated
Driving Toolbox) apps enable you to assign pixel labels manually. Each pixel can have at
most one pixel label. The labels are used to create ground truth data for training semantic
segmentation algorithms.

Start Pixel Labeling

Begin by loading an image, video, or image sequence into a labeling app and defining
pixel ROI labels. For more details, see:

* Image Labeler — “Get Started with the Image Labeler” on page 7-100
* Video Labeler — “Get Started with the Video Labeler” on page 7-109

* Ground Truth Labeler — “Get Started with the Ground Truth Labeler” (Automated
Driving Toolbox)

This example shows pixel labeling with the Image Labeler. You use the same tools to
label videos and image sequences with the Video Labeler or Ground Truth Labeler.

Select a pixel label definition from the ROI Label Definition pane. A Label Pixels tab
opens, containing tools to label pixels manually using polygons, brushes, or flood fill. You
can use the labeling tools in any order. This tab also has controls to adjust the display of
the image by zooming and panning and to adjust the opacity of the labels.

This example uses two general strategies to label pixels in the highway image:

» First use the semi-automated tools, such as Flood Fill and Smart Polygon. Then,
refine the labels using tools that offer more direct control, such as Polygon, Assisted
Freehand and Brush.

» First label distant objects with a rough estimation of obhject borders. Then, label nearer
objects with more precise object borders.
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Label Pixels Using Flood Fill Tool

The Flood Fill tool labels a group of connected pixels that have a similar color. In this

image, the sky is a good candidate for flood fill because the boundary of the bright sky is

clear against the dark vegetation and overpass. In contrast, flood fill cannot isolate the
vegetation because the color of the vegetation is too similar to the adjacent barriers,

roads, and vehicles.

To label pixels using Flood Fill:

Select the tool and a label. The pointer changes to a paint can &,

2 Click a starting pixel in the image.
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You can undo the flood fill, or any other labeling operation, by pressing Ctrl+Z.

Label Pixels Using Smart Polygon Tool

The Smart Polygon tool estimates the shape of an object of interest within a polygon
that you draw. The tool is useful when the shape of the object is not a simple polygon.
This example uses Smart Polygon to label the vegetation, which has a complicated
boundary with the sky.

To label pixels using Smart Polygon:

1 Select the tool and a label. The pointer changes to a crosshair +.

2 Click to add polygon vertices. Completely surround the object of interest, with some
space between the object and the polygon.

3 Close the polygon by clicking the first vertex after placing the other vertices.
Alternatively, you can double-click to add the last vertex and close the polygon in one
step.

After you close the polygon, the tool draws an initial label.

4  Adjust the shape and position of the polygon. When the object of interest extends to
the edge of the image, drag vertices to the edge of the image to ensure that the smart
polygon completely encloses the object. For instance, this example shows the two
leftmost vertices placed at the left edge of the image.
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Smart Polygon Actions

Goal Control
Move vertex Click and drag the vertex.
Add vertex * Right-click the polygon boundary at the position of the

new vertex, and select Add Point.
* Double-click the point on the boundary.
Delete vertex Right-click the vertex and select Delete Vertex.

Move polygon Click and drag any point on the polygon boundary
(excluding vertices).

Delete polygon Right-click the polygon boundary and select Delete
Polygon.

5 Use the Smart Polygon Editor tools to refine the label.
* Select Mark Foreground to mark areas inside the region that you want to label.
Foreground marks appear in green.

* Select Mark Background to mark areas inside the region that you do not want to
label. Background marks appear in red.

* Select Erase Marks to remove foreground or background marks that are no
longer needed.

* See Tips on page 7-98 for additional suggestions on using the Smart Polygon
tool.

6 To finalize the label, press Enter or select a new ROI Label Definition. You can no
longer edit the polygon vertices or mark foreground and background regions.
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Label Pixels Using Polygon Tool

The Polygon tool labels all pixels within a polygon that you draw. The controls for
defining and adjusting the vertices of a polygon are similar to the controls of the Smart

Polygon tool.

Add additional polygons over structures such as barriers and the road. Many vehicle
pixels are incorrectly labeled. The next step shows how to replace the erroneous labels
with the correct label.
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Label Pixels Using Assisted Freehand Tool

The Assisted Freehand tool enables you to draw an ROI that automatically follows the
edge of the subject in the underlying image. You can also adjust the size and position of

the ROI by using your mouse.
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Replace Pixel Labels

Each pixel can have at most one pixel label. When you apply a label to a pixel, the new
label replaces the previous label.

This example uses the Smart Polygon tool to label pixels belonging to the truck.
Foreground marks assign the vehicle label to subregions. Background marks revert
subregions to their prior label. For instance, in the first pair of images, background marks
revert subregions to the sky and vegetation labels. Similarly, in the second pair of images,
background marks revert subregions to the road label.
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The border of the truck is jagged because Smart Polygon labels entire subregions, not
individual pixels. The next step shows how to refine the labels along the border of the
truck.

Refine Labels Using Brush Tool

The Brush tool labels pixels when you draw over the image with the mouse. This example
uses Brush to remove spurs from the road and to make the edges of the truck smoother.

To label pixels using Brush:

1 Select the tool and a label. The pointer changes to a pen & , and a square appears to

indicate the size of the brush.
Adjust the size of the brush by using the Brush Size slider.

Click and drag the mouse to label pixels.

The Erase tool removes pixel labels when you draw over the image with the mouse.
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Visualize Pixel Labels

You can modify the view of the image to facilitate pixel labeling. The Zoom In, Zoom

Out, and Pan options enable you to zoom and pan the image with the mouse. To resume
pixel labeling, click the Label icon.

The Label Opacity slider adjusts the opacity of all pixel labels.
» Decrease the opacity to see the image more clearly. For instance, decrease the opacity

to make it easier to find the border between the bottom of the car and the road.

* Increase the opacity to see the segmentation more clearly. For instance, increase the
opacity to see that edge along the front bumper of the car should be smoothed. Also,
observe that the barrier and some distant vehicles have unlabeled pixels.

This is the final pixel-labeled image.
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Tips

* The Smart Polygon tool identifies an object of interest by using regional graph-based
segmentation ("GrabCut") [1]. The Smart Polygon tool divides the image into
subregions. The tool treats all subregions that are fully or partially outside the polygon
as belonging to the background. Therefore, to get an optimal segmentation, make sure
the object to be labeled is fully contained within the polygon, surrounded by a few
background pixels.

All pixels within a subregion have the same label. Marking pixels outside the polygon
has no effect on the label.
* To delete the most recently labeled ROI, press Ctrl+Z.

* Each pixel can have at most one pixel label. When you apply a label to a pixel, the new
label replaces the previous label.
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+ Pixel labeling is disabled when you pan and zoom the image. You must click the Label
button to resume pixel labeling.

* To ensure that all pixels in an image are labeled, begin by labeling the entire image
with a single label. Pick a label that represents a predominant ROI in the image, such
as sky, road, or background. Then, use the labeling tools to relabel objects with their
correct label.

References

[1] Rother, C., V. Kolmogorov, and A. Blake. "GrabCut - Interactive Foreground Extraction
using Iterated Graph Cuts". ACM Transactions on Graphics (SIGGRAPH). Vol. 23,
Number 3, 2004, pp. 309-314.

See Also
Ground Truth Labeler | Image Labeler | Video Labeler

More About

. “Get Started with the Image Labeler” on page 7-100

. “Get Started with the Video Labeler” on page 7-109

. “Get Started with the Ground Truth Labeler” (Automated Driving Toolbox)
. “How Labeler Apps Store Exported Pixel Labels” on page 7-3
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Get Started with the Image Labeler

The Image Labeler app provides an easy way to mark rectangular region of interest
(ROI) labels, polyline ROI labels, pixel ROI labels, and scene labels in a video or image
sequence. This example gets you started using the app by showing you how to:

* Manually label an image frame from an image collection.

* Automatically label across image frames using an automation algorithm.
» Export the labeled ground truth data.

RO Labws! Definition

£ Deane new RO/ label

S

¥ road

b vehicle
b overpass
I Adgaiibm ]
Scone Label Definition -—-—1 - 13
S B

£ by | Define new soime abel J
% add images from diciony - ACF Paspls Datectar |
Detect pecpla using |

i Aggregate Chanve Features (ACF)

W Add rages from datestore

Apply fo image:

Fiesmove from image

* Sunny
¥ Overcast

- - .
a

¥ Tunnel

FE e L Y

Video, I ngeq DEFINE LABEL M EXPORT LABELS
ideo, Image Sequence, i 2 ; utomation Algorithm
et il ROls and Scene Label Definitions Hedmg‘k:a&ﬁm priidas SAVE SESSION

ROI and Scene Label Definitions

* An ROI label corresponds to either a rectangular or pixel region of interest. These
labels contain two components: the label name, such as "cars," and the region you
create.

* A Scene label describes the nature of a scene, such as "sunny." You can associate this
label with a frame.

Using the Image Labeler app, you can:
* Interactively specify ROI labels and scene labels.

* Use rectangular ROI labels for objects such as vehicles, pedestrians, and road
signs.
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+ Use pixel labels for areas such as backgrounds, roads, and buildings.

* Use scene labels for conditions such as lighting and weather conditions, or for
events such as lane changes.

» Use built-in detection or tracking to automatically label the regions and scene labels.

* Write, import, and use your own custom automation algorithm to automatically label a
region and scene labels.

* Export the ground truth labels for object detector training, semantic segmentation, or
image classification.

Open the Image Labeler

* MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer
Vision, click the Image Labeler.

* MATLAB command prompt: Enter imageLabeler.

Load a Video or Image Sequence and Import Labels

To load data into the Image Labeler, from the app toolstrip, click Load. You can load the
following data:

* Data Source: Add images from a folder or by using the imageDatastore function.

* Label Definitions: Load a previously saved set of label definitions from a file. Label
definitions specify the names and types of items to label.

* Session: Load a previously saved session.

To import ROI and scene labels into the app, click Import Labels. You can import labels
from the MATLAB workspace or from previously exported MAT-files. The imported labels
must be groundTruth objects.

Create Label Definitions

Before you can label your images, you must define the name and type of each label
category.

To define an ROI label,
1 Click the Define new ROI label.
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2 Specify a label name and choose either Rectangle or Pixel label for the label type
from the drop-down menu.

3  Use the optional Group field to create a group. Click New Group from the drop-
down menu and enter a group title in the field that appears. You can move a label to a
different group by left-clicking and dragging the label.

ROI Label Defintion

i

Define Mew ROl Label

w Signage
b StopSign i
b Yield i
b SpeedLimit i
b Exit i
- \ehicles
» Truck |
b Car | [
b Bus <r

4 Optionally enter a label description.
To define a scene label:

Click the Define new scene label.
Specify a label name.

Use the optional Group field to create a group. Click New Group from the drop-
down menu and enter a group title in the field that appears.
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| Scene Label Definition

|:II:::| Define new scene label

Apphy to Image

Remove from Image

w \isibility

b Sunny |
b Overcast |
b Whiteout |
b Might
+ Location

F Tunnel |
b Bridge

4 Optionally enter a label description.

To create labels from the MATLAB command line, use the labelDefinitionCreator
object.

Label Ground Truth

After you set up the ROI label definitions, you can start labeling. You can create labels
manually or use an automation algorithm.

Create Labels Manually

* To draw ROI labels manually, select an ROI label definition from the left pane and use
the mouse to draw the regions on the image frames.

» To label individual pixels, see “Label Pixels for Semantic Segmentation” on page 7-88.
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» To mark scene labels manually, select a scene label definition from the left pane and
then click Add Label.

Create Labels Using an Automation Algorithm

Use the Select Algorithm section to select an algorithm for automated labeling. You can
use a built-in algorithm, create a custom algorithm, or import an algorithm.

* Built-In Algorithm: Track people using the aggregated channel features (ACF)
people detector algorithm.

* Add a Custom Algorithm: To define and use a custom automation algorithm with the
Image Labeler app, see “Create Automation Algorithm for Labeling” on page 7-84.

* Import an Algorithm: To import your own algorithm, select Algorithm > Add
Algorithm > Import Algorithm.

Run an Automation Algorithm

1 Click Automate. Only ROI and scene label definitions that are valid for the selected
algorithm are used. Valid label definitions are enabled in the left pane and algorithm
instructions appear in the right pane.

2 Click Run.

Examine the results of running the algorithm. If they are not satisfactory, click Undo
Run and change algorithm settings by clicking Settings.
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4 When you are satisfied with the algorithm results, click Accept. To delete the labels
generated during the automation session, click Cancel. The Cancel button cancels
only the algorithm session, not the app session.

Export Labels and Save Session

To export the ground truth labels to the MATLAB workspace or to a MAT-file, click Export
Labels. The labels are exported as a groundTruth object. Click Save to save the session.
The session and the exported labels are saved as MAT-files. You can use the exported
groundTruth object to train an object detector or semantic segmentation network. See
“Train Object Detector or Semantic Segmentation Network from Ground Truth Data” on
page 7-81.

Note Pixel label data and ground truth data are saved in separate files. The app saves
both files in the same folder. Keep these tips in mind:

* The groundTruth object contains the file paths corresponding to the data source and
the pixel label data. If you move the data source and pixel label data to a different
folder, to update the paths stored within the groundTruth object, use the
changeFilePaths function.

* Ifyou used an image collection to create your ground truth, do not delete images from
the location you loaded them from. The path to those images is saved in the
groundTruth object.

* You can move the groundTruth MAT-file to a different folder.

For more details, see “How Labeler Apps Store Exported Pixel Labels” on page 7-3 and
“Share and Store Labeled Ground Truth Data” on page 7-147.

See Also

Apps
Image Labeler

Objects
groundTruth | groundTruthDataSource
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More About
. “Create Automation Algorithm for Labeling” on page 7-84

“Train Object Detector or Semantic Segmentation Network from Ground Truth
Data” on page 7-81

. “Keyboard Shortcuts and Mouse Actions for Image Labeler” on page 7-153
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Choose a Labeling App

Computer Vision Toolbox and Automated Driving Toolbox provide several apps for
labeling ground truth data. You can use this labeled data to validate algorithms or to train
algorithms such as image classifiers, object detectors, and semantic segmentation
networks. The choice of labeling app depends on several factors, including the supported
data sources, labels, and types of automation.

One key consideration is the type of data that you want to label.

* Ifyour data is an image collection, use the Image Labeler app. An image collection is
an unordered set of images that can vary in size. For example, you can use the app to
label images of books to train a classifier.

* Ifyour data is a video or image sequence, use the Video Labeler or Ground Truth
Labeler app. An image sequence is an ordered set of images that resemble a video.
For example, you can use these apps to label a video or image sequence of cars driving
on a highway to train an object detector.

The table summarizes the key features of all three labeling apps.

Labeling App |Supported Supported Supported Additional
Data Sources |Labels Automation Features
Image Labeler |+ Image * Rectangle * Built-in * View visual
(Computer collections regions of automation summary of
Vision Toolbox) interest algorithms labeled data
(ROIs) + Custom

» Pixel ROIs automation

« Scenes algorithms

* Sublabels

» Attributes
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Labeling App |Supported Supported Supported Additional
Data Sources (Labels Automation Features
Video Labeler |¢ Video * Rectangle * Built-in * View visual
(Computer . Image ROIs automation summary of
Vision Toolbox) sequences o il R0l algorithms labeled data
+ Custom data |+ Pixel ROIs |° Cutstomt.
automation
sources . .
Sublabels algorithms
* Attributes « Temporal
* Scenes automation
algorithms
Ground Truth |« Video * Rectangle * Built-in * View visual
Labeler . Image ROIs automation summary of
(Automated sequences o L 0l algorithms, labeled data
Driving Toolbox includinga |,
g I Custom data |+ Pixel ROIs B Connect
vehicle external tool
UL * Sublabels detection to app, for
+ Attributes algorithm displaying
« Scenes e Custom . time- .
automation synchronized
algorithms signals such
« Temporal as lidar or
automation CAN bus data
algorithms

See Also

More About

. “Get Started with the Image Labeler” on page 7-100
. “Get Started with the Video Labeler” on page 7-109
. “Get Started with the Ground Truth Labeler” (Automated Driving Toolbox)
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Get Started with the Video Labeler

The Video Labeler app provides an easy way to mark rectangular region of interest (ROI)
labels, polyline ROI labels, pixel ROI labels, and scene labels in a video or image
sequence. This example gets you started using the app by showing you how to:

* Manually label an image frame from a video.
* Automatically label across image frames using an automation algorithm.
* Export the labeled ground truth data.

Load Unlabeled Data

Open the app and load a video of vehicles driving on a highway. Videos must be in a file
format readable by VideoReader.

videolLabeler('visiontraffic.avi')

Alternatively, open the app from the Apps tab, under Image Processing and Computer
Vision. Then, from the Load menu, load a video data source.

Explore the video. Click the Play button ] to play the entire video, or use the slider =
to navigate between frames.
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FILE

| ROILabel Definition |

= & =

Label Sublabel Attribute

To label an ROI, you must first define an
ROI Label.

| Scene Label Definition

”VEEJ Define new scene label

Current Frame: Acdd Label

Time Interval Remove Label

To label a scene, you must first define a
scene label.

1 = I
00.00000 05.60255 1771770 17.71770 | | | | o i Time Infceval
Start Time Current End Time Max Time

The app also enables you to load image sequences, with corresponding timestamps, by
selecting Load > Image Sequence. The images must be readable by imread.

To load a custom data source that is readable by VideoReader or imread, see “Use
Custom Data Source Reader for Ground Truth Labeling” on page 7-130.

Set Time Interval to Label

You can label the entire video or start with a portion of the video. In this example, you
label a five-second time interval within the loaded video. In the text boxes below the
video, enter these times in seconds:

1 In the Start Time box, type 5.
2 In the Current Time box, type 5 so that the slider is at the start of the time interval.
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3 Inthe End Time box, type 10.

0500000 05.00000 10.00000
Start Time Current End Time

Optionally, to make adjustments to the time interval, click and drag the red interval flags.

—o

The entire app is now set up to focus on this specific time interval. The video plays only
within this interval, and labeling and automation algorithms apply only to this interval.
You can change the interval at any time by moving the flags.

To expand the time interval to fill the entire playback section, click Zoom in Time
Interval.

Create Label Definitions

Define the labels you intend to draw on the video frames. In this example, you define
labels directly within the app. To define labels from the MATLAB command line instead,
use the labelDefinitionCreator.

Create ROI Labels

An ROI label is a label that corresponds to a region of interest (ROI). You can define these
types of ROI labels.
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7-112

ROI Label Description Example: Driving Scene
Rectangle Draw rectangular ROI labels | Vehicles, pedestrians, road
(bounding boxes) around signs
objects.
Line Draw linear ROI labels to Lane boundaries, guard

represent lines. To draw a
polyline ROI, use two or
more points.

rails, road curbs
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ROI Label Description Example: Driving Scene

Pixel label Assign labels to pixels for | Vehicles, road surface,
semantic segmentation. See |trees, pavement
“Label Pixels for Semantic
Segmentation” on page 7-
88.

In this example, you define a vehicle group for labeling types of vehicles, and then
create a Rectangle ROI label for a Car and a Truck.

In the ROI Label Definition pane on the left, click Label.

Create a Rectangle label named Car.

From the Group dropdown menu, select New Group ... and name the group
Vehicle

4 Click OK.

The Vehicle group name appears in the ROI Label Definition pane with the label
Car created. You can move a labels to a different position or group by left-clicking
and dragging the label.

5 Add a second label. Click Label. Name the label Truck and make sure the Vehicle
group is selected. Click OK.

6 In the first video frame within the time interval, use the mouse to draw rectangular
Car ROIs around the two vehicles.
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| ROILabel Definition | visiontrafficavi |
= 5, E o

Label ublabe Attri

+ Vehicle

b Car B
b Truck 1

T

Create Sublabels

A sublabel is a type of ROI label that corresponds to a parent ROI label. Each sublabel
must belong to, or be a child of, a specific label defined in the ROI Label Definition
pane. For example, in a driving scene, a vehicle label might have sublabels for headlights,
license plates, or wheels.

Define a sublabel for headlights.

In the ROI Label Definition pane on the left, click the Car label.

Click Sublabel.

Create a Rectangle sublabel named headlight and optionally write a description.
Click OK.

The headlight sublabel appears in the ROI Label Definition pane. The sublabel is
nested under the selected ROI label, Car, and has the same color as its parent label.

You can add multiple sublabels under a label. You can also drag-and-drop the
sublabels to reorder them in the list. Right-click any label for additional edits.
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| ROILsbel Definition |
M L =
Label Sublabel Attribute
+ Vehicle %
b Car P
b headlight i
b Truck |

In the ROI Label Definition pane, select the headlight sublabel.

In the video frame, select the Car label. The label turns yellow when selected. You
must select the Car label (parent ROI) before you can add a sublabel to it.

Draw headlight sublabels for each of the cars.

Repeat the previous steps to label the headlights of the other car. To draw the labels
more precisely, use the Pan, Zoom In, and Zoom Out options available from the

toolstrip.

ROILabel Definition |

N E

=] ==l

Label Sublabe Aftribute

w Vehicle
") o=

b headlight
i b Truck -

| visiontraffic.avi
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Sublabels can only be used with rectangular or polyline ROI labels and cannot have their
own sublabels. For more details on working with sublabels, see “Use Sublabels and
Attributes to Label Ground Truth Data” on page 7-134.

Create Attributes

An attribute provides further categorization of an ROI label or sublabel. Attributes specify
additional information about a drawable label. For example, in a driving scene, attributes
might include the type or color of a vehicle.

You can define these types of attributes.

Attribute Type Sample Attribute Sample Default Values
Definition
Numeric Value
Adftribute Mame
numboors

Default Scalar Value (Optional)
4

St ring Attribute Name

color

Default Walue (Optional}

Logical Aftribute Name
inMotion Lipgical =
Default Value (Optional)

True e
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Attribute Type Sample Attribute Sample Default Values
Definition
List Attribute Name __[ Attributes and Sublabels |
carfype

List kems (Each tem must appear Car

Sedan Attributes
Hatchback
Wagon
carMake Missan
inMotion True
color Blue
numDoors 4
carType Sedan
Sedan
Wagan

Add an attribute for the vehicle type.

1 In the ROI Label Definition pane on the left, select the Car label and click
Attribute.
In the Attribute Name box, type carType. Set the attribute type to List.

In the List Items section, type different types of cars, such as Sedan, Hatchback,

and Wagon, each on its own line. Optionally give the attribute a description, and click
OK.
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4 In the first frame of the video, select a Car ROI label. In the Attributes and
Sublabels pane, select the appropriate carType attribute value for that vehicle.

5 Repeat the previous step to assign a carType attribute to the other vehicle.

_J Attributes and Sublabels
I Car
—Attributes
carType
Sedan
Hatchback
—Sublabelz
headlight : 2

You can also add attributes to sublabels. Add an attribute for the headlight sublabel that
tells whether the headlight is on.

1 Inthe ROI Label Definition pane on the left, select the headlight sublabel and
click Attribute.

7-118



Get Started with the Video Labeler

2 In the Attribute Name box, type isOn. Set the attribute type to Logical. Leave the
Default Value set to Empty, optionally write a description, and click OK.

3 Select a headlight in the video frame. Set the appropriate isOn attribute value, or
leave the attribute value set to Empty.

4 Repeat the previous step to set the isOn attribute for the other headlights.

j Attributes and Sublabels
Car
" headlight
—Attributes
isOn ol
Empty |
True
False
—Sublabels
Sublabel cannot contain sublabels.
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To delete an attribute, right-click an ROI label or sublabel, and select the attribute to
delete. Deleting the attribute removes attribute information from all previously created

ROI label annotations.

Create Scene Labels

A scene label defines additional information for the entire scene. Use scene labels to
describe conditions, such as lighting and weather, or events, such as lane changes.

Create a scene label to use in the video.

1 In the Scene Label Definition pane on the left, click the Define new scene label
button, and create a scene label named sunny. Make sure Group is set to None.

Click OK.

The Scene Label Definition pane shows the scene label definition. The scene labels
that are applied to the current frame appear in the Scene Labels pane on the right.
The sunny scene label is empty (white), because the scene label has not yet been

applied to the frame.

| ROILabel Definition |

o S

Label Sublabe Atribute

« Vehicle
b Car
b headlight ]
b Tuck B

| Scene Label Definition

:ED:h Define new scene label

@ Current Frame | Add Label |

O'I'lmalnlerva\ | Remove Label |

F sunny I

j visiontraffic.avi

|

Scene Labels

A" [P

2 The entire scene is sunny, so specify to apply the sunny scene label over the entire
time interval. With the sunny scene label definition still selected in the Scene Label

Definition pane, select Time Interval.

3 Click Add Label.

The sunny label now applies to all frames in the time interval.
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] Scene Label Definition 1

|:II:::| Define new scene label

Scene Labels

N sunny

O Current Frame Add Label

@ Time Interval Remove Label

! F  sunny I |

Label Ground Truth

So far, you have labeled only one frame in the video. To label the remaining frames,
choose one of these options.

Label Ground Truth Manually

When you click the right arrow key to advance to the next frame, the ROI labels from the
previous frame do not carry over. Only the sunny scene label applies to each frame,
because this label was applied over the entire time interval.

Advance frame by frame and draw the label and sublabel ROIs manually. Also update the
attribute information for these ROIs.

Label Ground Truth Using Automation Algorithm

To speed up the labeling process, you can use an automation algorithm within the app.
You can either define your own automation algorithm, see “Create Automation Algorithm
for Labeling” on page 7-84 and “Temporal Automation Algorithms” on page 7-139, or use
a built-in automation algorithm. In this example, you label the ground truth using a built-
in point tracking algorithm.

In this example, you automate the labeling of only the Car ROI labels. The built-in
automation algorithms do not support sublabel and attribute automation.

1  Select the labels you want to automate. In the first frame of the video, press Ctrl and
click to select the two Car label annotations. The labels are highlighted in yellow.
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7-122

From the app toolstrip, select Select Algorithm > Point Tracker. This algorithm
tracks one or more rectangle ROIs over short intervals using the Kanade-Lucas-
Tomasi (KLT) algorithm.

(optional) Configure the automation settings. Click Configure Automation. By
default, the automation algorithm applies labels from the start of the time interval to
the end. To change the direction and start time of the algorithm, choose one of the
options shown in this table.

i Run automation from:

O Start time to End time ‘

Direction of automation:

O Forward
" Reverse [

™ Current time to End time
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Direction of Run algorithm from Example

automation
Fun automation from: | - r

™ End time to Start time
O Current time to Start time

Run automation from: | L] r

® Forward QO Start time to End time
O Reverse ™ Current time to End time

Run automation from: | - r

™ End time to Start time
© Current time to Start time

Direction of automation:

The Import selected ROIs must be selected so that the Car labels you selected are
imported into the automation session.

Import selected ROIs

Click Automate to open an automation session. The algorithm instructions appear in
the right pane, and the selected labels are available to automate.
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visiontraffic.avi | Attributes and Sublabels | Point Tracker |

7-124

ROl Selection: ou can gelect ROIs to track before or after entering Automation
mode. To select before automation, click one RO, or for multiple ROls, use
Cirl+click,

Scene Labels
[ Isunny

Run: Click Run to track the selected ROIs over the interval.

Review and Modify: Review automated labels manually. ¥'ou can modify, delete,
and add new labels.

Change Settings: If you are not =satisfied with the results, click Undo Run. Click

= Settings to modify algorithm settings, and then Run again. The Point Tracker is
ideal for short intervals. If the tracker veers off, consider uging a different feature
detector.

|
Accept'Cancel: When you are satisfied with results, click Accept and return to
manual labeling. Click Cancel to return to manual labeling without saving
automation results.

5 Click Run to track the selected ROIs over the interval.
Examine the results of running the algorithm.

The vehicles that enter the scene later are unlabeled. The unlabeled vehicles did not
have an initial ROI label, so the algorithm did not track them. Click Undo Run. Use
the slider to find the frames where each vehicle first appears. Draw vehicle ROIs
around each vehicle, and then click Run again.

7 Advance frame by frame and manually move, resize, delete, or add ROIs to improve
the results of the automation algorithm.

When you are satisfied with the algorithm results, click Accept. Alternatively, to
discard labels generated during the session and label manually instead, click Cancel.
The Cancel button cancels only the algorithm session, not the app session.

Optionally, you can now manually label the remaining frames with sublabel and attribute
information.

To further evaluate your labels, you can view a visual summary of the labeled ground
truth. From the app toolstrip, select View Label Summary. Use this summary to
compare the frames, frequency of labels, and scene conditions. For more details, see
“View Summary of Ground Truth Labels” on page 7-141. This summary does not support
sublabels or attributes.
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Export Labeled Ground Truth

You can export the labeled ground truth to a MAT-file or to a variable in the MATLAB
workspace. In both cases, the labeled ground truth is stored as a groundTruth object.
You can use this object to train a deep-learning-based computer vision algorithm. For
more details, see “Train Object Detector or Semantic Segmentation Network from Ground
Truth Data” on page 7-81.

Note If you export pixel data, the pixel label data and ground truth data are saved in
separate files but in the same folder. For considerations when working with exported pixel
labels, see “How Labeler Apps Store Exported Pixel Labels” on page 7-3.

In this example, you export the labeled ground truth to the MATLAB workspace. From the
app toolstrip, select Export Labels > To Workspace. The exported MATLAB variable,
gTruth, isa groundTruth object.

Display the properties of the exported groundTruth object. The information in your
exported object might differ from the information shown here.

gTruth
gTruth =
groundTruth with properties:
DataSource: [1x1 groundTruthDataSource]
LabelDefinitions: [3x5 table]
LabelData: [531x3 timetablel]
Data Source

DataSourceis a groundTruthDataSource object containing the path to the video and
the video timestamps. Display the properties of this object.

gTruth.DataSource

ans =
groundTruthDataSource for a video file with properties

Source: ...matlab\toolbox\vision\visiondata\visiontraffic.avi
TimeStamps: [531x1 duration]
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Label Definitions

LabelDefinitions is a table containing information about the label definitions. This
table does not contain information about the labels that are drawn on the video frames.
To save the label definitions in their own MAT-file, from the app toolstrip, select Save >
Label Definitions. You can then import these label definitions into another app session
by selecting Import Files.

Display the label definitions table. Each row contains information about an ROI label
definition or a scene label definition. If you exported pixel label data, the
LabelDefinitions table also includes a PixelLabelID column containing the ID
numbers for each pixel label definition.

gTruth.LabelDefinitions

ans =
3x5 table
Name Type Group Description Hierarchy
‘Car' Rectangle 'Vehicle' Y [1x1 struct]
'Truck' Rectangle 'Vehicle' n []
'sunny' Scene "None' n []

Within LabelDefinitions, the Hierarchy column stores information about the
sublabel and attribute definitions of a parent ROI label.

Display the sublabel and attribute information for the Car label.
gTruth.LabelDefinitions.Hierarchy{1}
ans =

struct with fields:

carType: [1x1 struct]
headlight: [1x1 struct]
Type: Rectangle
Description: "'

Display information about the headlight sublabel.

gTruth.LabelDefinitions.Hierarchy{1}.headlight
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ans =
struct with fields:

Type: Rectangle
Description: "'
isOn: [1x1 struct]

Display information about the carType attribute.
gTruth.LabelDefinitions.Hierarchy{1}.carType
ans =

struct with fields:

ListItems: {3x1 cell}
Description: "'

Label Data

LabelData is a timetable containing information about the ROI labels drawn at each
timestamp, across the entire video. The timetable contains one column per label.

Display the first few rows of the timetable. The first few timestamps indicate that no
vehicles were detected and that the sunny scene label is Talse. These results are
because this portion of the video was not labeled. Only the time interval of 5-10 seconds
was labeled.

labelData = gTruth.labelData;
head(labelData)

ans =

8x3 timetable

Time Car Truck sunny
5.005 sec [1x2 struct] [1x0 struct] true
5.0384 sec [1x2 struct] [1x0 struct] true
5.0717 sec [1x2 struct] [1x0 struct] true
5.1051 sec [1x2 struct] [1x0 struct] true
5.1385 sec [1x2 struct] [1x0 struct] true
5.1718 sec [1x2 struct] [1x0 struct] true
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5.2052 sec [1x2 struct] [1x0 struct] true
5.2386 sec [1x2 struct] [1x0 struct] true

Display the first few timetable rows from the 5-10 second interval that contains labels.

gTruthInterval = labelData(timerange('00:00:05','00:00:10"'),:);
head(gTruthInterval)

ans =

8x3 timetable

Time Car Truck sunny
5.005 sec [1x2 struct] [1x0 struct] true
5.0384 sec [1x2 struct] [1x0 struct] true
5.0717 sec [1x2 struct] [1x0 struct] true
5.1051 sec [1x2 struct] [1x0 struct] true
5.1385 sec [1x2 struct] [1x0 struct] true
5.1718 sec [1x2 struct] [1x0 struct] true
5.2052 sec [1x2 struct] [1x0 struct] true
5.2386 sec [1x2 struct] [1x0 struct] true

For each Car label, the structure includes the position of the bounding box and
information about its sublabels and attributes.

Display the bounding box positions for the vehicles at the start of the time interval. Your
bounding box positions might differ from the ones shown here.

gTruthInterval(l,:).Car{1l}.Position % [x y width height], in pixels
ans =
1x4 single row vector

415.8962 82.4737 130.8474 129.3805

ans =
1x4 single row vector

235.2182 1.0000 117.0611 55.3500



See Also

Save App Session

From the app toolstrip, select Save and save a MAT-file of the app session. The saved
session includes the data source, label definitions, and labeled ground truth. It also
includes your session preferences, such as the layout of the app. To change layout
options, select Layout.

The app session MAT-ile is separate from the ground truth MAT-file that is exported when
you select Export > From File. To share labeled ground truth data, as a best practice,
share the ground truth MAT-file containing the groundTruth object, not the app session
MAT-file. For more details, see “Share and Store Labeled Ground Truth Data” on page 7-
147.

See Also

Apps
Video Labeler

Objects
groundTruth | groundTruthDataSource | labelDefinitionCreator |
vision.labeler.AutomationAlgorithm | vision.labeler.mixin.Temporal

More About

. “Use Custom Data Source Reader for Ground Truth Labeling” on page 7-130
. “Keyboard Shortcuts and Mouse Actions for Video Labeler” on page 7-157

. “Use Sublabels and Attributes to Label Ground Truth Data” on page 7-134

. “Label Pixels for Semantic Segmentation” on page 7-88

. “Create Automation Algorithm for Labeling” on page 7-84

. “View Summary of Ground Truth Labels” on page 7-141

. “Share and Store Labeled Ground Truth Data” on page 7-147

. “Train Object Detector or Semantic Segmentation Network from Ground Truth
Data” on page 7-81
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Use Custom Data Source Reader for Ground Truth
Labeling

7-130

In this section...

“Import Data Source Using Custom Reader Dialog Box” on page 7-130
“Import Data Source Using Custom Reader Function” on page 7-131

The Ground Truth Labeler (requires Automated Driving Toolbox) and Video Labeler
apps enable you to label ground truth data in a video or in a sequence of images.

You can use a custom reader to import any video or sequence of images that is supported
by VideoReader or imread. You can either use the custom reader dialog box in the app
or open the app and specify a custom reader source.

The Image Labeler app does not support custom data source readers.

Import Data Source Using Custom Reader Dialog Box

In your app, Load > Custom Reader to load your data by using a custom reader
function. You must provide the Custom reader function handle and the Data source
name. In addition, you must import corresponding timestamps from the MATLAB
workspace.



Use Custom Data Source Reader for Ground Truth Labeling

SR 4 Load Custorn Data Source — o

I Video

Image Sequence Custom reader function

Custom Reader Data source name

LABEL wrerimn NS

Label Definitions |mp|:||1 “mmg FFCHTI wnmgpace

'-_'j Session

Click here for mare information

oad Cancel

Import Data Source Using Custom Reader Function

Specify the Custom Reader

Specify a custom reader as a function handle. The custom reader must have the syntax:
outputImage = readerFcn(sourceName,currentTimeStamp)

where readerFcn is the name of your custom reader function.

The custom reader function loads an image from sourceName, which corresponds to the
current timestamp specified by currentTimeStamp.

currentTimeStamp = timestamps(currldx);

The outputImage from the custom function must be a grayscale or RGB image in any
format supported by imshow. currentTimeStamp is a scalar value that corresponds to
the current frame that the algorithm is executing.

Read Ground Truth Data Using Custom Reader

Use the groundTruthDataSource function to read the custom source data with the
custom reader function handle:
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gtSource = groundTruthDataSource(sourceName, readerFcn, timeStamps)

The syntax returns a groundTruthDataSource object with the custom reader function
handle, readerFcn. The app uses the handle to load the custom data source specified by
sourceName. The custom reader function loads an image from sourceName that
corresponds to the current timestamp specified by the indexed value in the timeStamps
vector.

The syntax returns a groundTruthDataSource object, which the app uses to read data
from the custom source.

Read Ground Truth Data Using Custom Reader

Use the groundTruthDataSource function to read the custom source data with the
custom reader function handle:

gtSource = groundTruthDataSource(sourceName, readerFcn, timeStamps)

The syntax returns a groundTruthDataSource object with the custom reader function
handle, readerFcn. The app uses the handle to load the custom data source specified by
sourceName. The custom reader function loads an image from sourceName that
corresponds to the current timestamp specified by the indexed value in the timeStamps
vector.

The syntax returns a groundTruthDataSource object, which the app uses to read data
from the custom source.

Import Ground Truth Data into App

You can import the returned groundTruthDataSource object into the Ground Truth
Labeler or Video Labeler app. For example:

groundTruthLabeler(gtSource)

videolLabeler(gtSource)

See Also

Apps
Ground Truth Labeler | Video Labeler



See Also

Functions
groundTruth | groundTruthDataSource

More About

. “Get Started with the Ground Truth Labeler” (Automated Driving Toolbox)
. “Get Started with the Video Labeler” on page 7-109

7-133



7 Object Detection

Use Sublabels and Attributes to Label Ground Truth
Data

In the Video Labeler and Ground Truth Labeler (requires Automated Driving Toolbox)
apps, a sublabel is a type of label for drawing regions of interest (ROIs) around objects
that belong to a parent label. You can use sublabels to provide a greater level of detail
about the ROIs in your labeled ground truth data. For example:

* For a bird label, you can define wing or beak sublabels.
» For a vehicle label, you can define headlight, licensePlate, and wheel sublabels.

!_J__R_m Label_[ﬂi_t.ion _|__ _ij visiontraffic.avi 1
[ = I[3

” Label Sublabel  Aftribute

b vehicle .

b headiight

F licensePlate N

b wheel i

When to Use Sublabels vs. Attributes

A sublabel can be anything that is drawable and is part of a parent label. An attribute
provides information about labels. However, attributes are not drawable and they can be
associated with either a label or a sublabel.

Consider the possible sublabel and attribute candidates for the label vehicle:

* A wheel is a good candidate for a sublabel. A wheel is part of a vehicle, and you can
draw a label around a wheel.
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* Vehicle color is a good candidate for an attribute. You cannot draw a label around the
color of a vehicle.

* Vehicle type (car, truck, and so on) is a good candidate for an attribute. Although you
can draw a label around cars and trucks, they are not part of a vehicle. Instead, you
can define a list attribute with types car and truck, or define logical attributes
named isCar, isTruck, and so on.

Draw Sublabels

Within each frame, each sublabel that you draw must be associated with a parent label.
Therefore, before you can draw a sublabel on a frame, you must:

1 From the ROI Label Definition pane, select the type of sublabel that you want to
draw.
2 Within the frame, select a parent ROI label.

For example, to label the headlights of a vehicle, you must first select the headlight
sublabel definition. On the frame, however, you cannot yet create a sublabel.

| ROI Label Definition |

S

Label Attribute
» vehicle "

» headlight 1!
» licenseP. P

b wheel P

After you select a vehicle label on the frame, you can draw a sublabel that is associated
with that vehicle. Once you create a sublabel, you cannot add another sublabel to the
vehicle unless you select the vehicle label again.
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Notice that sublabels do not have to be completely enclosed within the parent label. You
can drag sublabels outside the bounds of the parent label and the parent-child
relationship remains unchanged.

Copy and Paste Sublabels

When labeling, it is common to copy (Ctrl+C) and paste (Ctrl+V) labels from one frame
into another.

If you copy a sublabel into another frame, the parent label is copied over as well. That
way, the parent-child relationship is maintained between frames. Any sublabels that you
did not select to copy do not appear in the new frame.



Use Sublabels and Attributes to Label Ground Truth Data

Copy Sublabel Paste to Next Frame
lﬁ—-ln‘_—

If you copy a parent label, however, the associated sublabels are not copied over.

Copy Label Paste to Next Frame
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Delete Sublabels

To delete an ROI sublabel from a frame, right-click the sublabel and select the Delete
option for the sublabel shape.

To delete an ROI sublabel definition, from the ROI Label Definition pane, right-click the
sublabel and select Delete.

Caution If you delete a sublabel, all ROI sublabel annotations currently on the frames
are deleted as well. Attribute definitions for that sublabel are deleted as well.

Sublabel Limitations

* Sublabels can be used only with rectangle and polyline labels.
* Sublabels cannot have their own sublabels.
* The built-in automation algorithms do not support sublabel automation.

*  When you click View Label Summary, the Label Summary window does not display
sublabel information.

See Also

Apps
Ground Truth Labeler | Video Labeler

Functions
labelDefinitionCreator

More About

. “Get Started with the Ground Truth Labeler” (Automated Driving Toolbox)
. “Get Started with the Video Labeler” on page 7-109

. “Label Pixels for Semantic Segmentation” on page 7-88

. “Automate Attributes of Labeled Objects” (Automated Driving Toolbox)
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Temporal Automation Algorithms

The Video Labeler and Ground Truth Labeler (requires Automated Driving Toolbox)
apps enable you to create and import a custom automation algorithm to automatically
label your data. Automation algorithms can be time-independent or time-dependent.
Time-independent (nontemporal) algorithms can operate independently on each time
stamp (or image). For example, a detection algorithm, such as the built-in People
Detector, is a time-independent algorithm. In time-dependent (temporal) algorithms, there
is a dependence on the time stamp of execution. For example, a tracking algorithm, such
as the temporal built-in Point Tracker, uses tracking from a previous time stamp to track
objects in the current time stamp.

Class Inheritance

If your algorithm is time-based, you must inherit from the
vision.labeler.AutomationAlgorithmand vision.labeler.mixin.Temporal
classes. For example:

classdef MyCustomTemporalAlg < vision.labeler.AutomationAlgorithm && vision.labeler.mixin.Temporal

If your algorithm is time-independent, you only need to inherit from the
vision.labeler.AutomationAlgorithm class. For example:

classdef MyCustomNonTemporalAlg < vision.labeler.AutomationAlgorithm
Enable Temporal Properties
Inheriting from the temporal mixin class enables you to access properties such as

StartTime, CurrentTime and EndTime to design time-based algorithms. See the
vision.labeler.mixin.Temporal interface for details.

Create a Temporal Automation Algorithm to use with the
Ground Truth Labeler

Only the Video Labeler and Ground Truth Labeler apps support both temporal and
nontemporal automation algorithms. The Image Labeler app only supports nontemporal
automation algorithms.
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To create a temporal automation algorithm to use with the Ground Truth Labeler, open
the app by typing groundTruthLabeler at the MATLAB command prompt. Click Select
Algorithm > Add Algorithm > Create new algorithm to open the template.

See Also

Apps
Ground Truth Labeler | Image Labeler | Video Labeler

Functions
groundTruth | groundTruthDataSource |
vision.labeler.AutomationAlgorithm|vision.labeler.mixin.Temporal

Related Examples
. “Get Started with the Video Labeler” on page 7-109
. “Get Started with the Ground Truth Labeler” (Automated Driving Toolbox)

. “Automate Ground Truth Labeling for Semantic Segmentation” (Automated Driving
Toolbox)
. “Automate Ground Truth Labeling of Lane Boundaries” (Automated Driving Toolbox)
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View Summary of Ground Truth Labels

In this section...

“View Label Summary” on page 7-141

“Compare Selected Labels” on page 7-144

You can use the Image Labeler, Video Labeler, and Ground Truth Labeler (requires
Automated Driving Toolbox) apps to interactively label ground truth data in an image
collection, video, image sequence, or from a custom data source. For details about the
supported data sources, see “Choose a Labeling App” on page 7-107.

You can use the View Label Summary option in the app to view and compare the session
distribution of ROI and scene labels over either time or frames.

Algorithm:
|7 Select Algorithm ~

tomate  View Label

@ Configure Automation Summary

AUTOMATE LABELING SUMMAR™Y

e . i

View Label Summary

View Label Summary creates dockable distribution graphs for the ROI labels and scene
labels.

For ROI labels, the graph displays the number of ROIs on the y-axis, at each time stamp
on the x-axis. The visual summary does not include information about sublabels or label
attributes.

For scene labels, the graph displays the presence or absence of a scene label at each
timestamp. For video, the x-axis represents the time in seconds. For images or for a
custom sequence of images, the x-axis represents frames. Use the graphs to examine the
occurrence of labels over time in relation to each other. Drag the black vertical line in any
graph to move the video to a different timestamp.
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(4 Label Summary — x
']
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For pixel labels, the graph displays the percentage of the frame that is labeled with each

pixel label.
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|4 Label Summary - O bt
-
Select All PreviNext Unlabeled : M| Compare Selected Labels
ROI Labels
/%n_ ELJ
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1 2 ] 4 5 1] 7 8 9 10 11 12

To dock the Label Summary window in your workspace, select Layout > Dock Label
Summary.

7-143



7 Object Detection

E Layout ':1 =t

SELECT LAYOUT

[ Default

= @ SceneCentered

TIE 0T

7| Save layout

Crganize layout
DOCK

Dock Label Summary

Compare Selected Labels

Use the Compare Selected Labels option and the check boxes to selectively compare
labels. ROI labels selected for comparison are displayed on a single graph.
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(4] Label Summary

View Label Summary

%, Pixel Labels M| M|

i

See Also

Apps
Ground Truth Labeler | Image Labeler | Video Labeler

Functions

driving.connector.Connector | groundTruth | groundTruthDataSource |
objectDetectorTrainingData | pixelLabelTrainingData

More About

. “Choose a Labeling App” on page 7-107
. “Get Started with the Image Labeler” on page 7-100
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. “Get Started with the Video Labeler” on page 7-109
. “Get Started with the Ground Truth Labeler” (Automated Driving Toolbox)
. “Create Automation Algorithm for Labeling” on page 7-84

. “Train Object Detector or Semantic Segmentation Network from Ground Truth
Data” on page 7-81
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Share and Store Labeled Ground Truth Data

The Image Labeler, Video Labeler, and Ground Truth Labeler (requires Automated
Driving Toolbox) apps enable you to label images, videos, and other ground truth data
sources. You can then export the labeled ground truth as a groundTruth object. This
object contains information about the:

* Data source

* Label definitions

* Marked ground truth labels
You can share this object with:

* Other labeling colleagues, who can use it to continue labeling
» Algorithm developers, who can use it to train algorithms, such as an object detector or
semantic segmentation network

* Validation engineers, who can use it to validate algorithms

Share Ground Truth

To export and share labeled ground truth data from one of the labeling apps, select
Export Labels > To File. Then either share the exported MAT-file directly with
individuals on your team or place it in a shared network location.

If the exported ground truth contains pixel labels, the app also generates a
PixelLabelData folder containing the pixel label data. The LabelData table stored in
the groundTruth object references the path to this folder. Share this folder along with
the groundTruth object.

The labeling apps also enable you to save a MAT-file of the entire app session. Do not
share this file. This file contains app preferences that are specific to your local machine,
and it might not work on other machines.
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Labeling App
| Y

Save > Session Export Labels > To File

Do Not Share ) Current Folder ) Current Folder Share

LL_ gTruth.mat

ij applabelingSession.mat =
Qp w gTruth
a‘ App preferences (position of PixellabelData

QR

slider, app layout, etc.) (pixal labels only)

groundTruth to export Label l1.png
Label 2.png

If you re-export a ground truth object containing pixel label data, the app generates a new
PixelLabelData folder. Even if you are overwriting the original groundTruth object,
the app generates a new PixellLabelData folder. The generated folders are named
PixelLabelData 1, PixellLabelData 2, and so on, depending on how many times you
re-export the groundTruth object to the same folder.

When sharing a groundTruth object, be sure to share the correct PixelLabelData
folder associated with it. For example, if you overwrite the original groundTruth object,
share the overwritten object and the newly created PixelLabelData 1 folder.
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Current Folder

th gfrathmat gTruth.mat

| szzusn gTruch

PixellabelData \O\A

Label 1.png
Label 2.png

PixelLabelData 1

Label 1.png
Label Z.png f,f

In addition to sharing the groundTruth object, you must also share the data source, and
any additional files associated with that data source.
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App

Data Source

Files to Share

Image Labeler

Image collection

groundTruth object
MAT-file

PixellLabelData folder
(pixel labels only)

Folders containing image
collections (if not in
shared location)

Video Labeler or Ground
Truth Labeler

Video

groundTruth object
MAT-file

PixellLabelData folder
(pixel labels only)

Video source file (if not
in shared location)

Image sequence

groundTruth object
MAT-file

PixellLabelData folder
(pixel labels only)

Folder containing image
sequence (if not in
shared location)

Timestamps duration
vector (if specified)

Custom data source reader

groundTruth object
MAT-file

PixellLabelData folder
(pixel labels only)

Data source files (if not
in shared location)

Custom reader function
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Move Ground Truth

In the exported groundTruth object, the DataSource property contains the absolute
paths to the data source files. For example:

gTruth.DataSource
ans =

groundTruthDataSource for an image collection with properties

Source: {

" ...\matlab\toolbox\vision\visiondata\imageSets\cups\bit
...\matlab\toolbox\vision\visiondata\imageSets\cups\bl
...\matlab\toolbox\vision\visiondata\imageSets\cups\ha

... and 9 more

}

If you move the groundTruth object to a new location, you might need to change the file
paths stored in the groundTruthDataSource object. Even if the data source files are on
a shared network, if other people map a different drive letter to their network folder, the
file paths can be incorrect.

To update these paths, use the changeFilePaths function. Specify the groundTruth
object as an input argument to this function. Also specify a cell array of string vectors
containing the old paths and new paths. For example: {["C:\Shared\ImgFolder
\Imgl.png" "D:\Shared\ImgFolder\Imgl.png"]l; ["C:\Shared\ImgFolder
\Img2.png" "D:\Shared\ImgFolder\Img2.png"l; ...}.

If your groundTruth object contains pixel label data, the changeFilePaths function
also updates the path names to the pixel data stored in the PixelLabelData folder.

Store Ground Truth

Store the groundTruth object in a location that is on the MATLAB search path. For more
details, see “What Is the MATLAB Search Path?” (MATLAB).

For a video, an image sequence, or an image collection containing images from a single
folder, consider storing the groundTruth object in the parent folder of the data source.
For image collections containing images from different folders, no specific
recommendations exist for where to store the object. You can label image collections
using the Image Labeler only.
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See Also

Apps
Ground Truth Labeler | Image Labeler | Video Labeler

Objects
groundTruth | groundTruthDataSource

Functions
changeFilePaths

More About
. “How Labeler Apps Store Exported Pixel Labels” on page 7-3
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Keyboard Shortcuts and Mouse Actions for Image
Labeler

Note On Macintosh platforms, use the Command (8) key instead of Ctrl.

Label Definitions

Task Action

In the ROI Label Definition pane, Up arrow or down arrow

navigate through ROI labels and their

groups

In the Scene Label Definition pane, Hold Alt and press the up arrow or down
navigate through scene labels and their arrow

groups

Reorder labels within a group or move Click and drag labels

labels between groups

Reorder groups Click and drag groups

Image Browsing and Selection

Browse and select images from the image browser, which is located in the bottom pane of

the app.

Task Action

Browse through images one at a time Left arrow and right arrow
Browse to the next set of images that is * PC: Page Up and Page Down

viewable in the image browser + Mac: Hold Fn and press the up and

down arrows
Go to the first image * PC: Home

e Mac: Hold Fn and press the left arrow
Go to the last image * PC: End

* Mac: Hold Fn and press the right arrow
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Task

Action

Select all images from the current image to
the first image

¢ PC: Shift+Home

* Mac: Hold Fn+Shift and press the left
arrow

Select all images from the current image to
the last image

PC: Shift+End

* Mac: Hold Fn+Shift and press the right
arrow

Select all images from the current image to
a specific image

Hold Shift and click the final image in the
range

Select a specific set of images

Hold Ctrl and click the images you want to
select

Labeling Window

Perform labeling actions, such as adding, moving, and deleting regions of interest (ROIs),

on the current image.

Task Action
Undo labeling action Ctrl+Z
Redo labeling action Ctrl+Y
Select all rectangle ROIs Ctrl+A

Select specific rectangle ROIs

Hold Ctrl and click the ROIs you want to
select

Cut selected rectangle ROIs Ctrl+X
Copy selected rectangle ROIs to clipboard |Ctrl+C
Paste copied rectangle ROIs Ctrl+Vv
Delete selected rectangle ROIs Delete

Polygon Drawing

Draw polygons to label pixels on a frame.




Keyboard Shortcuts and Mouse Actions for Image Labeler

Task

Action

Commit a polygon to the frame, excluding
the currently active line segment

Press Enter or right-click while drawing
the polygon

The polygon closes up by forming a line
between the previously committed point
and the first point in the polygon.

Commit a polygon to the frame, including
the currently active line segment

Double-click while drawing polygon

The polygon closes up by forming a line
between the point where you double-clicked
and the first point in the polygon.

Remove the previously created line Backspace
segment from a polygon

Cancel drawing and delete the entire Escape
polygon

Zooming

Task Action

Zoom in or out of frame

Move the scroll wheel up (zoom in) or down
(zoom out)

The scroll wheel works in Zoom In, Zoom
Out, and Label mode but not Pan mode.

Zoom in on specific section of frame

From the app toolstrip, under Modes,
select Zoom In. Then, draw a box around
the section of the frame you want to zoom
in on.

App Sessions

Task

Action

Save current session

Ctrl+S
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See Also

Image Labeler

More About
. “Get Started with the Image Labeler” on page 7-100
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Keyboard Shortcuts and Mouse Actions for Video
Labeler

Note On Macintosh platforms, use the Command (8) key instead of Ctrl.

Label Definitions

Task

Action

In the ROI Label Definition pane,
navigate through ROI labels and their
groups

Up arrow or down arrow

In the Scene Label Definition pane,
navigate through scene labels and their
groups

Hold Alt and press the up arrow or down
arrow

Reorder labels within a group or move Click and drag labels
labels between groups
Reorder groups Click and drag groups

Frame Navigation and Time Interval Settings

Navigate between frames in a video or image sequence, and change the time interval of
the video or image sequence. These controls are located in the bottom pane of the app.

Task Action

Go to the next frame Right arrow
Go to the previous frame Left arrow
Go to the last frame * PC: End

* Mac: Hold Fn and press the right arrow

Go to the first frame

* PC: Home
e Mac: Hold Fn and press the left arrow

Navigate through time interval boxes and
frame navigation buttons

Tab
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Task

Action

Commit time interval settings

Press Enter within the active time interval
box (Start Time, Current, or End Time)

Labeling Window

Perform labeling actions, such as adding, moving, and deleting regions of interest (ROIs),

on the current image or video frame.

Task Action
Undo labeling action Ctrl+Z
Redo labeling action Ctrl+Y
Select all rectangle and line ROIs Ctrl+A

Select specific rectangle and line ROIs

Hold Ctrl and click the ROIs you want to
select

Cut selected rectangle and line ROIs

Ctrl+X

Copy selected rectangle and line ROIs to
clipboard

Ctrl+C

Paste copied rectangle and line ROIs

» If a sublabel was copied, both the

» If a parent label was copied, only the
parent label is pasted, not its sublabels.

For more details, see “Use Sublabels and
Attributes to Label Ground Truth Data” on
page 7-134.

sublabel and its parent label are pasted.

Ctrl+V

Delete selected rectangle and line ROIs

Delete

Polyline Drawing

Draw ROI line labels on a frame. ROI line labels are polylines, meaning that they are

composed of one or more line segments.




Keyboard Shortcuts and Mouse Actions for Video Labeler

Task

Action

Commit a polyline to the frame, excluding
the currently active line segment

Press Enter or right-click while drawing
the polyline

Commit a polyline to the frame, including
the currently active line segment

Double-click while drawing the polyline

A new line segment is committed at the
point where you double-click.

Delete the previously created line segment
in a polyline

Backspace

Cancel drawing and delete the entire
polyline

Escape

Polygon Drawing

Draw polygons to label pixels on a frame.

Task

Action

Commit a polygon to the frame, excluding
the currently active line segment

Press Enter or right-click while drawing
the polygon

The polygon closes up by forming a line
between the previously committed point
and the first point in the polygon.

Commit a polygon to the frame, including
the currently active line segment

Double-click while drawing polygon

The polygon closes up by forming a line
between the point where you double-clicked
and the first point in the polygon.

Remove the previously created line Backspace
segment from a polygon
Cancel drawing and delete the entire Escape

polygon
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Zooming

Task

Action

Zoom in or out of frame

Move the scroll wheel up (zoom in) or down
(zoom out)

The scroll wheel works in Zoom In or
Zoom Out mode but not Label or Pan
modes.

Zoom in on specific section of frame

From the app toolstrip, under Modes,
select Zoom In. Then, draw a box around
the section of the frame you want to zoom
in on.

App Sessions

Task

Action

Save current session

Ctrl+S

See Also
Video Labeler

More About

. “Get Started with the Video Labeler” on page 7-109
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Point Feature Types

Image feature detection is a building block of many computer vision tasks, such as image
registration, tracking, and object detection. The Computer Vision Toolbox includes a
variety of functions for image feature detection. These functions return points objects that
store information specific to particular types of features, including (x,y) coordinates (in
the Location property). You can pass a points object from a detection function to a
variety of other functions that require feature points as inputs. The algorithm that a
detection function uses determines the type of points object it returns.

Functions That Return Points Objects

Points Object Returned By Type of Feature

cornerPoints detectFASTFeatures
Features from accelerated
segment test (FAST) algorithm
Uses an approximate metric to
determine corners. [1]

detectMinEigenFeatures
Minimum eigenvalue algorithm

Uses minimum eigenvalue Corners .
metric to determine corner Single-scale detection . .
locations. [4] Point tracking, image registration with

little or no scale change, corner detection
in scenes of human origin, such as streets
and indoor scenes.

detectHarrisFeatures
Harris-Stephens algorithm
More efficient than the
minimum eigenvalue algorithm.

(3]
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Points Object

Returned By

Type of Feature

BRISKPoints detectBRISKFeatures
Binary Robust Invariant
Scalable Keypoints (BRISK)
algorithm [6]
Corners
Multiscale detection
Point tracking, image registration,
handles changes in scale and rotation,
corner detection in scenes of human
origin, such as streets and indoor scenes
SURFPoints detectSURFFeatures =I5 ol
Speeded-up robust features '
(SURF) algorithm [11]
Blobs
Multiscale detection
Object detection and image registration
with scale and rotation changes
ORBPoints detectORBFeatures

Oriented FAST and Rotated
BRIEF (ORB) method [13]

Corners

Multi-scale detection

Point tracking, image registration,
handles changes in rotation, corner
detection in scenes of human origin, such
as streets and indoor scenes
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Points Object Returned By

Type of Feature

KAZEPoints

scale. [12]

detectKAZEFeatures

KAZE is not an acronym, but a
name derived from the
Japanese word kaze, which
means wind. The reference is to
the flow of air ruled by
nonlinear processes on a large

Multi-scale blob features

Reduced blurring of object boundaries

MSERRegions

(81[9][10]

detectMSERFeatures
Maximally stable extremal
regions (MSER) algorithm [7]

Regions of uniform intensity

Multi-scale detection

Registration, wide baseline stereo
calibration, text detection, object
detection. Handles changes to scale and
rotation. More robust to affine transforms
in contrast to other detectors.

Functions That Accept Points Objects

Function

Description

relativeCameraPose

Compute relative rotation and translation between
camera poses

estimateFundamentalMatrix

Estimate fundamental matrix from corresponding
points in stereo images

estimateGeometricTransform

Estimate geometric transform from matching point
pairs

estimateUncalibratedRectification

Uncalibrated stereo rectification

extractFeatures

Extract interest point descriptors

Method Feature Vector
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Function

Description

7-164

BRISK

The function sets the Orientation
property of the validPoints output
object to the orientation of the
extracted features, in radians.

FREAK The function sets the Orientation
property of the validPoints output
object to the orientation of the
extracted features, in radians.

SURF The function sets the Orientation

property of the validPoints output
object to the orientation of the
extracted features, in radians.

When you use an MSERRegions object
with the SURF method, the Centroid
property of the object extracts SURF
descriptors. The Axes property of the
object selects the scale of the SURF
descriptors such that the circle
representing the feature has an area
proportional to the MSER ellipse area.
The scale is calculated as
1/4*sqrt((majorAxes/2) .*
(minorAxes/2)) and saturated to
1.6, as required by the SURFPoints
object.
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Function

Description

KAZE

Non-linear pyramid-based features.

The function sets the Orientation
property of the validPoints output
object to the orientation of the
extracted features, in radians.

When you use an MSERRegions object
with the KAZE method, the Location
property of the object is used to
extract KAZE descriptors.

The Axes property of the object
selects the scale of the KAZE
descriptors such that the circle
representing the feature has an area
proportional to the MSER ellipse area.

ORB

The function does not set the
Orientation property of the
validPoints output object to the
orientation of the extracted features.
By default, the Orientation property
of validPoints is set to the
Orientation property of the input
ORBPoints object.

Block

Simple square neighbhorhood.

The Block method extracts only the
neighborhoods fully contained within
the image boundary. Therefore, the
output, validPoints, can contain
fewer points than the input POINTS.
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Function Description

Auto

The function selects the Method based
on the class of the input points and
implements:

The FREAK method for a
cornerPoints input object.

The SURF method for a SURFPoints
or MSERRegions input object.

The FREAK method for a
BRISKPoints input object.

The ORB method for a ORBPoints
input object.

For an M-by-2 input matrix of [x y]
coordinates, the function implements
the Block method.

extractHOGFeatures Extract histogram of oriented gradients (HOG)
features

insertMarker Insert markers in image or video

showMatchedFeatures Display corresponding feature points

triangulate 3-D locations of undistorted matching points in stereo
images

undistortPoints Correct point coordinates for lens distortion
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Related Examples

. “Detect BRISK Points in an Image and Mark Their Locations”
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. “Find Corner Points in an Image Using the FAST Algorithm”
. “Find Corner Points Using the Harris-Stephens Algorithm”

. “Find Corner Points Using the Eigenvalue Algorithm”

. “Find MSER Regions in an Image”

. “Detect SURF Interest Points in a Grayscale Image”

. “Automatically Detect and Recognize Text in Natural Images”

. “Object Detection in a Cluttered Scene Using Point Feature Matching”
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Local Feature Detection and Extraction

Local features and their descriptors, which are a compact vector representations of a
local neighborhood, are the building blocks of many computer vision algorithms. Their
applications include image registration, object detection and classification, tracking, and
motion estimation. Using local features enables these algorithms to better handle scale
changes, rotation, and occlusion. The Computer Vision Toolbox provides the FAST, Harris,
ORB, and Shi & Tomasi methods for detecting corner features, and the SURF, KAZE, and
MSER methods for detecting blob features. The toolbox includes the SURE, KAZE,
FREAK, BRISK, ORB, and HOG descriptors. You can mix and match the detectors and the
descriptors depending on the requirements of your application.

What Are Local Features?

Local features refer to a pattern or distinct structure found in an image, such as a point,
edge, or small image patch. They are usually associated with an image patch that differs
from its immediate surroundings by texture, color, or intensity. What the feature actually
represents does not matter, just that it is distinct from its surroundings. Examples of local
features are blobs, corners, and edge pixels.

Example 7.1. Example of Corner Detection

I = imread('circuit.tif');

corners = detectFASTFeatures(I, 'MinContrast',0.1);
J = insertMarker(I,corners, 'circle');

imshow(J)
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Benefits and Applications of Local Features

Local features let you find image correspondences regardless of occlusion, changes in
viewing conditions, or the presence of clutter. In addition, the properties of local features
make them suitable for image classification, such as in “Image Classification with Bag of
Visual Words” on page 7-217.

Local features are used in two fundamental ways:

* To localize anchor points for use in image stitching or 3-D reconstruction.

» To represent image contents compactly for detection or classification, without
requiring image segmentation.

Application MATLAB Examples

Image registration and stitching |“Feature Based Panoramic Image Stitching”

Object detection “Object Detection in a Cluttered Scene Using Point
Feature Matching”

Object recognition “Digit Classification Using HOG Features”
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Application MATLAB Examples

Object tracking “Face Detection and Tracking Using the KLT
Algorithm”

Image category recognition “Image Category Classification Using Bag of
Features”

Finding geometry of a stereo “Uncalibrated Stereo Image Rectification”

system

3-D reconstruction “Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”

Image retrieval “Image Retrieval Using Customized Bag of Features”

What Makes a Good Local Feature?

Detectors that rely on gradient-based and intensity variation approaches detect good
local features. These features include edges, blobs, and regions. Good local features
exhibit the following properties:

* Repeatable detections:
When given two images of the same scene, most features that the detector finds in
both images are the same. The features are robust to changes in viewing conditions
and noise.

* Distinctive:
The neighborhood around the feature center varies enough to allow for a reliable
comparison between the features.

* Localizable:
The feature has a unique location assigned to it. Changes in viewing conditions do not
affect its location.

Feature Detection and Feature Extraction

Feature detection selects regions of an image that have unique content, such as corners
or blobs. Use feature detection to find points of interest that you can use for further
processing. These points do not necessarily correspond to physical structures, such as the
corners of a table. The key to feature detection is to find features that remain locally
invariant so that you can detect them even in the presence of rotation or scale change.

Feature extraction involves computing a descriptor, which is typically done on regions
centered around detected features. Descriptors rely on image processing to transform a
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local pixel neighborhood into a compact vector representation. This new representation
permits comparison between neighborhoods regardless of changes in scale or orientation.
Descriptors, such as SIFT or SUREF, rely on local gradient computations. Binary
descriptors, such as BRISK, ORB or FREAK, rely on pairs of local intensity differences,
which are then encoded into a binary vector.

Choose a Feature Detector and Descriptor

Select the best feature detector and descriptor by considering the criteria of your
application and the nature of your data. The first table helps you understand the general
criteria to drive your selection. The next two tables provide details on the detectors and
descriptors available in Computer Vision Toolbox.

Considerations for Selecting a Detector and Descriptor

Criteria

Suggestion

Type of features in your image

Use a detector appropriate for your data. For example, if
your image contains an image of bacteria cells, use the
blob detector rather than the corner detector. If your
image is an aerial view of a city, you can use the corner
detector to find man-made structures.

Context in which you are using the
features:

* Matching key points
* Classification

The HOG, SURF, and KAZE descriptors are suitable for
classification tasks. In contrast, binary descriptors, such
as ORB, BRISK and FREAK, are typically used for finding
point correspondences between images, which are used
for registration.

Type of distortion present in your image

Choose a detector and descriptor that addresses the
distortion in your data. For example, if there is no scale
change present, consider a corner detector that does not
handle scale. If your data contains a higher level of
distortion, such as scale and rotation, then use SURE,
ORB or KAZE feature detector and descriptor. The SURF
and the KAZE methods are computationally intensive.

Performance requirements:

* Real-time performance required

* Accuracy versus speed

Binary descriptors are generally faster but less accurate
than gradient-based descriptors. For greater accuracy,
use several detectors and descriptors at the same time.

7-172




Local Feature Detection and Extraction

Choose a Detection Function Based on Feature Type

Detector Feature Type Function Scale Independent

FAST [1] Corner detectFASTFeatures No

Minimum Corner detectMinEigenFeatures No

eigenvalue

algorithm [4]

Corner detector [3] [Corner detectHarrisFeatures No

SURF [11] Blob detectSURFFeatures Yes

KAZE [12] Blob detectKAZEFeatures Yes

BRISK [6] Corner detectBRISKFeatures Yes

MSER [8] Region with detectMSERFeatures Yes
uniform intensity

ORB [13] Corner detectORBFeatures No

Note Detection functions return objects that contain information about the features. The
extractHOGFeatures and extractFeatures functions use these objects to create
descriptors.
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Choose a Descriptor Method

Descriptor Binar [Function and Method Invariance Typical Use
y Scal |Rotati |Finding Point |Classificati
e on Corresponden |on
ces
HOG No extractHOGFeatures(I, ... INo |No No Yes
)
LBP No extractLBPFeatures(I, ... INo |Yes No Yes
)
SURF No extractFeatures(I,point |Yes |Yes Yes Yes
s,'Method’,'SURF')
KAZE No extractFeatures(I,point |Yes |Yes Yes Yes
s,'Method','KAZE")
FREAK Yes |extractFeatures(I,point |Yes |Yes Yes No
s,'Method','FREAK")
BRISK Yes extractFeatures(I,point |Yes |Yes Yes No
s,'Method','BRISK')
ORB Yes extractFeatures(I,point |[No [Yes Yes No
s,'Method','ORB')
* Block No extractFeatures(I,point [No |No Yes Yes
R Simplepixel s,'Method','Block')
neighborhood
around a
keypoint
Note

* The extractFeatures function provides different extraction methods to best match
the requirements of your application. When you do not specify the 'Method' input for
the extractFeatures function, the function automatically selects the method based
on the type of input point class.

* Binary descriptors are fast but less precise in terms of localization. They are not
suitable for classification tasks. The extractFeatures function returns a
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binaryFeatures object. This object enables the Hamming-distance-based matching
metric used in the matchFeatures function.

Use Local Features

Registering two images is a simple way to understand local features. This example finds a
geometric transformation between two images. It uses local features to find well-localized
anchor points.

Display two images
The first image is the original image.

original = imread('cameraman.tif');
figure;
imshow(original);

The second image is the original image rotated and scaled.

scale = 1.3;

J = imresize(original,scale);
theta = 31;

distorted = imrotate(J,theta);
figure

imshow(distorted)

Detect matching features between the original and distorted image

Detecting the matching SURF features is the first step in determining the transform
needed to correct the distorted image.

ptsOriginal
ptsDistorted

detectSURFFeatures(original);
detectSURFFeatures(distorted);

Extract features and compare the detected blobs between the two images

The detection step found several roughly corresponding blob structures in both images.
Compare the detected blob features. This process is facilitated by feature extraction,
which determines a local patch descriptor.

[featuresOriginal,validPtsOriginal] = ...
extractFeatures(original,ptsOriginal);
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[featuresDistorted,validPtsDistorted] = ...
extractFeatures(distorted,ptsDistorted);

It is possible that not all of the original points were used to extract descriptors. Points
might have been rejected if they were too close to the image border. Therefore, the valid
points are returned in addition to the feature descriptors.

The patch size used to compute the descriptors is determined during the feature
extraction step. The patch size corresponds to the scale at which the feature is detected.
Regardless of the patch size, the two feature vectors, featuresOriginal and
featuresDistorted, are computed in such a way that they are of equal length. The
descriptors enable you to compare detected features, regardless of their size and
rotation.

Find candidate matches

Obtain candidate matches between the features by inputting the descriptors to the
matchFeatures function. Candidate matches imply that the results can contain some
invalid matches. Two patches that match can indicate like features but might not be a
correct match. A table corner can look like a chair corner, but the two features are
obviously not a match.

indexPairs = matchFeatures(featuresOriginal, featuresDistorted);
Find point locations from both images

Each row of the returned indexPairs contains two indices of candidate feature matches
between the images. Use the indices to collect the actual point locations from both
images.

matchedOriginal
matchedDistorted

validPtsOriginal(indexPairs(:,1));
validPtsDistorted(indexPairs(:,2));

Display the candidate matches

figure
showMatchedFeatures(original,distorted, matchedOriginal,matchedDistorted)
title('Candidate matched points (including outliers)')

Analyze the feature locations

If there are a sufficient number of valid matches, remove the false matches. An effective
technique for this scenario is the RANSAC algorithm. The
estimateGeometricTransform function implements M-estimator sample consensus
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(MSAC), which is a variant of the RANSAC algorithm. MSAC finds a geometric transform
and separates the inliers (correct matches) from the outliers (spurious matches).

[tform, inlierDistorted,inlierOriginal] = ...
estimateGeometricTransform(matchedDistorted, ...

matchedOriginal, 'similarity');

Display the matching points

figure

showMatchedFeatures(original,distorted,inlierOriginal,inlierDistorted)

title('Matching points (inliers only)"')

legend('ptsOriginal', 'ptsDistorted')

Verify the computed geometric transform

Apply the computed geometric transform to the distorted image.

outputView
recovered

imref2d(size(original));
imwarp(distorted, tform, 'OutputView',6 outputView);

Display the recovered image and the original image.

figure
imshowpair(original, recovered, 'montage")

Image Registration Using Multiple Features

This example builds on the results of the "Use Local Features" example. Using more than
one detector and descriptor pair enables you to combine and reinforce your results.
Multiple pairs are also useful for when you cannot obtain enough good matches (inliers)
using a single feature detector.

Load the original image.

original = imread('cameraman.tif');

figure;

imshow(original);

text(size(original,2),size(original,1l)+15,
'Image courtesy of Massachusetts Institute of Technology',
'FontSize',7, 'HorizontalAlignment', 'right');
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Image courteay of Massachusetls Inatiute of Technology

Scale and rotate the original image to create the distorted image.

scale = 1.3;
J = imresize(original, scale);

theta = 31;

distorted = imrotate(J,theta);
figure

imshow(distorted)
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Detect the features in both images. Use the BRISK detectors first, followed by the SURF
detectors.

ptsOriginalBRISK
ptsDistortedBRISK

detectBRISKFeatures(original, 'MinContrast',0.01);
detectBRISKFeatures(distorted, 'MinContrast',0.01);
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ptsOriginalSURF
ptsDistortedSURF

detectSURFFeatures(original);
detectSURFFeatures(distorted);

Extract descriptors from the original and distorted images. The BRISK features use the
FREAK descriptor by default.

[featuresOriginalFREAK,validPtsOriginalBRISK] = ...
extractFeatures(original, ptsOriginalBRISK);

[featuresDistortedFREAK, validPtsDistortedBRISK] = ...
extractFeatures(distorted,ptsDistortedBRISK);

[featuresOriginalSURF,validPtsOriginalSURF] = ...
extractFeatures(original,ptsOriginalSURF);

[featuresDistortedSURF,validPtsDistortedSURF] = ...
extractFeatures(distorted,ptsDistortedSURF);

Determine candidate matches by matching FREAK descriptors first, and then SURF
descriptors. To obtain as many feature matches as possible, start with detector and
matching thresholds that are lower than the default values. Once you get a working
solution, you can gradually increase the thresholds to reduce the computational load
required to extract and match features.

indexPairsBRISK = matchFeatures(featuresOriginalFREAK, ...
featuresDistortedFREAK, 'MatchThreshold', 40, '"MaxRatio',0.8);

indexPairsSURF = matchFeatures(featuresOriginalSURF, featuresDistortedSURF);
Obtain candidate matched points for BRISK and SURF.

matchedOriginalBRISK
matchedDistortedBRISK

validPtsOriginalBRISK(indexPairsBRISK(:,1));
validPtsDistortedBRISK(indexPairsBRISK(:,2));

matchedOriginalSURF
matchedDistortedSURF

validPtsOriginalSURF(indexPairsSURF(:,1));
validPtsDistortedSURF(indexPairsSURF(:,2));

Visualize the BRISK putative matches.

figure

showMatchedFeatures(original,distorted,matchedOriginalBRISK,. ..
matchedDistortedBRISK)

title('Putative matches using BRISK & FREAK')

legend('ptsOriginalBRISK", 'ptsDistortedBRISK")
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Putative matches using BRISK & FREAK

O ptsOriginalBRISK
+  pisDistortedBRISK

Combine the candidate matched BRISK and SURF local features. Use the Location
property to combine the point locations from BRISK and SURF features.

matchedOriginalXy = ...
[matchedOriginalSURF.Location; matchedOriginalBRISK.Location];
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matchedDistortedXY = ...
[matchedDistortedSURF.Location; matchedDistortedBRISK.Location];

Determine the inlier points and the geometric transform of the BRISK and SURF features.

[tformTotal,inlierDistortedXY,inlierOriginalXY] = ...
estimateGeometricTransform(matchedDistortedXY, ...
matchedOriginalXY, 'similarity');

Display the results. The result provides several more matches than the example that used
a single feature detector.

figure
showMatchedFeatures(original,distorted,inlierOriginalXY,inlierDistortedXY)
title('Matching points using SURF and BRISK (inliers only)')
legend('ptsOriginal', 'ptsDistorted')
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Matching points using SURF and BRISK (inliers only)

O ptsOriginal
ptsDistorted

Compare the original and recovered image.

imref2d(size(original));
imwarp(distorted, tformTotal, 'OutputView', outputView);

outputView
recovered
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figure;
imshowpair(original, recovered, 'montage")
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Related Examples

. “Detect BRISK Points in an Image and Mark Their Locations”
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. “Find Corner Points in an Image Using the FAST Algorithm”
. “Find Corner Points Using the Harris-Stephens Algorithm”

. “Find Corner Points Using the Eigenvalue Algorithm”

. “Find MSER Regions in an Image”

. “Detect SURF Interest Points in a Grayscale Image”

. “Automatically Detect and Recognize Text in Natural Images”

. “Object Detection in a Cluttered Scene Using Point Feature Matching”
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Train a Cascade Object Detector

In this section...

“Why Train a Detector?” on page 7-187

“What Kinds of Objects Can You Detect?” on page 7-187

“How Does the Cascade Classifier Work?” on page 7-188

“Create a Cascade Classifier Using the trainCascadeObjectDetector” on page 7-189
“Troubleshooting” on page 7-193

“Examples” on page 7-194

“Train Stop Sign Detector” on page 7-201

Why Train a Detector?

The vision.CascadeObjectDetector System object comes with several pretrained
classifiers for detecting frontal faces, profile faces, noses, eyes, and the upper body.
However, these classifiers are not always sufficient for a particular application. Computer
Vision Toolbox provides the trainCascadeObjectDetector function to train a custom

classifier.
POSITIVE IMAGES Cascade Classifier
» Q stage one
[ ] e ... tra|nCascadeObjeCtDeteCtOf Elageliw vision.CascadeObjectDetector
funciEg stage three System Object
NEGATIVE IMAGES
stored as an XML file

What Kinds of Objects Can You Detect?

The Computer Vision Toolbox cascade object detector can detect object categories whose
aspect ratio does not vary significantly. Objects whose aspect ratio remains fixed include
faces, stop signs, and cars viewed from one side.

The vision.CascadeObjectDetector System object detects objects in images by
sliding a window over the image. The detector then uses a cascade classifier to decide
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whether the window contains the object of interest. The size of the window varies to
detect objects at different scales, but its aspect ratio remains fixed. The detector is very
sensitive to out-of-plane rotation, because the aspect ratio changes for most 3-D objects.
Thus, you need to train a detector for each orientation of the object. Training a single
detector to handle all orientations will not work.

How Does the Cascade Classifier Work?

The cascade classifier consists of stages, where each stage is an ensemble of weak
learners. The weak learners are simple classifiers called decision stumps. Each stage is
trained using a technique called boosting. Boosting provides the ability to train a highly
accurate classifier by taking a weighted average of the decisions made by the weak
learners.

Each stage of the classifier labels the region defined by the current location of the sliding
window as either positive or negative. Positive indicates that an object was found and
negative indicates no objects were found. If the label is negative, the classification of this
region is complete, and the detector slides the window to the next location. If the label is
positive, the classifier passes the region to the next stage. The detector reports an object
found at the current window location when the final stage classifies the region as positive.

The stages are designed to reject negative samples as fast as possible. The assumption is
that the vast majority of windows do not contain the object of interest. Conversely, true
positives are rare and worth taking the time to verify.

* A true positive occurs when a positive sample is correctly classified.
» A false positive occurs when a negative sample is mistakenly classified as positive.
* A false negative occurs when a positive sample is mistakenly classified as negative.

To work well, each stage in the cascade must have a low false negative rate. If a stage
incorrectly labels an object as negative, the classification stops, and you cannot correct
the mistake. However, each stage can have a high false positive rate. Even if the detector
incorrectly labels a nonobject as positive, you can correct the mistake in subsequent
stages.

The overall false positive rate of the cascade classifier is f°, where f is the false positive
rate per stage in the range (0 1), and s is the number of stages. Similarly, the overall true

positive rate is t°, where t is the true positive rate per stage in the range (0 1]. Thus,
adding more stages reduces the overall false positive rate, but it also reduces the overall
true positive rate.
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Create a Cascade Classifier Using the
trainCascadeObjectDetector

Cascade classifier training requires a set of positive samples and a set of negative images.
You must provide a set of positive images with regions of interest specified to be used as
positive samples. You can use the Image Labeler to label objects of interest with
bounding boxes. The Image Labeler outputs a table to use for positive samples. You also
must provide a set of negative images from which the function generates negative
samples automatically. To achieve acceptable detector accuracy, set the number of stages,
feature type, and other function parameters.

—
trainCascadeObjectDetect -::51

A

Function computes the number ofpositive samples it needs.

( ] Train Stage One Using:
- Calewlated number of positive samples, which isless than the the total number of user-provided positive samples.
stage one | - Ganerated negative samples from user-provided negative images.

Train Stage Two:
- Ulse stage one.
stage two | - Classify all positive samples. Discard samples missclassified as negatives.

- Of the remaining in positive samples, use the same calculated number of positive samples.
- Generate negative samples by processing negative images with sliding windew and using false-positive classified samples.

e Train Stage N
- Ulse previous stages.
stage N | - Classify all positive samples. Discard samples missclassified as negatives.

- Of the remaining in positive samples, use the same calculated number of positive samples.
- Generate negative samples by processing negative images with sliding window and using false-positive classified samples.

Considerations when Setting Parameters

Select the function parameters to optimize the number of stages, the false positive rate,
the true positive rate, and the type of features to use for training. When you set the
parameters, consider these tradeoffs.

7-189



7 Object Detection

7-190

Condition

Consideration

A large training set (in the thousands).

Increase the number of stages and set a
higher false positive rate for each stage.

A small training set.

Decrease the number of stages and set a
lower false positive rate for each stage.

To reduce the probability of missing an
object.

Increase the true positive rate. However, a
high true positive rate can prevent you
from achieving the desired false positive
rate per stage, making the detector more
likely to produce false detections.

To reduce the number of false detections.

Increase the number of stages or decrease
the false alarm rate per stage.

Feature Types Available for Training

Choose the feature that suits the type of object detection you need. The
trainCascadeObjectDetector supports three types of features: Haar, local binary
patterns (LBP), and histograms of oriented gradients (HOG). Haar and LBP features are
often used to detect faces because they work well for representing fine-scale textures.
The HOG features are often used to detect objects such as people and cars. They are
useful for capturing the overall shape of an object. For example, in the following
visualization of the HOG features, you can see the outline of the bicycle.
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You might need to run the trainCascadeObjectDetector function multiple times to
tune the parameters. To save time, you can use LBP or HOG features on a small subset of




Train a Cascade Object Detector

your data. Training a detector using Haar features takes much longer. After that, you can
run the Haar features to see if the accuracy improves.

Supply Positive Samples

To create positive samples easily, you can use the Image Labeler app. The Image Labeler
provides an easy way to label positive samples by interactively specifying rectangular
regions of interest (ROIs).

You can also specify positive samples manually in one of two ways. One way is to specify
rectangular regions in a larger image. The regions contain the objects of interest. The
other approach is to crop out the object of interest from the image and save it as a
separate image. Then, you can specify the region to be the entire image. You can also
generate more positive samples from existing ones by adding rotation or noise, or by
varying brightness or contrast.

Supply Negative Images

Negative samples are not specified explicitly. Instead, the
trainCascadeObjectDetector function automatically generates negative samples
from user-supplied negative images that do not contain objects of interest. Before training
each new stage, the function runs the detector consisting of the stages already trained on
the negative images. Any objects detected from these image are false positives, which are
used as negative samples. In this way, each new stage of the cascade is trained to correct
mistakes made by previous stages.
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discard image

false-positive object detected

Use this detection as a negative sample for the next stage in the classifier

As more stages are added, the detector's overall false positive rate decreases, causing
generation of negative samples to be more difficult. For this reason, it is helpful to supply
as many negative images as possible. To improve training accuracy, supply negative
images that contain backgrounds typically associated with the objects of interest. Also,
include negative images that contain nonobjects similar in appearance to the ohjects of
interest. For example, if you are training a stop-sign detector, include negative images
that contain road signs and shapes similar to a stop sign.

Choose the Number of Stages

There is a trade-off between fewer stages with a lower false positive rate per stage or
more stages with a higher false positive rate per stage. Stages with a lower false positive
rate are more complex because they contain a greater number of weak learners. Stages
with a higher false positive rate contain fewer weak learners. Generally, it is better to
have a greater number of simple stages because at each stage the overall false positive
rate decreases exponentially. For example, if the false positive rate at each stage is 50%,
then the overall false positive rate of a cascade classifier with two stages is 25%. With
three stages, it becomes 12.5%, and so on. However, the greater the number of stages,
the greater the amount of training data the classifier requires. Also, increasing the
number of stages increases the false negative rate. This increase results in a greater
chance of rejecting a positive sample by mistake. Set the false positive rate
(FalseAlarmRate) and the number of stages, (NumCascadeStages) to yield an
acceptable overall false positive rate. Then you can tune these two parameters
experimentally.

Training can sometimes terminate early. For example, suppose that training stops after
seven stages, even though you set the number of stages parameter to 20. It is possible
that the function cannot generate enough negative samples. If you run the function again
and set the number of stages to seven, you do not get the same result. The results
between stages differ because the number of positive and negative samples to use for
each stage is recalculated for the new number of stages.
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Training Time of Detector

Training a good detector requires thousands of training samples. Large amounts of
training data can take hours or even days to process. During training, the function
displays the time it took to train each stage in the MATLAB Command Window. Training
time depends on the type of feature you specify. Using Haar features takes much longer
than using LBP or HOG features.

Troubleshooting
What if you run out of positive samples?

The trainCascadeObjectDetector function automatically determines the number of
positive samples to use to train each stage. The number is based on the total number of
positive samples supplied by the user and the values of the TruePositiveRate and
NumCascadeStages parameters.

The number of available positive samples used to train each stage depends on the true
positive rate. The rate specifies what percentage of positive samples the function can
classify as negative. If a sample is classified as a negative by any stage, it never reaches
subsequent stages. For example, suppose you set the TruePositiveRate to 0.9, and all
of the available samples are used to train the first stage. In this case, 10% of the positive
samples are rejected as negatives, and only 90% of the total positive samples are
available for training the second stage. If training continues, then each stage is trained
with fewer and fewer samples. Each subsequent stage must solve an increasingly more
difficult classification problem with fewer positive samples. With each stage getting fewer
samples, the later stages are likely to overfit the data.

Ideally, use the same number of samples to train each stage. To do so, the number of
positive samples used to train each stage must be less than the total number of available
positive samples. The only exception is that when the value of TruePositiveRate times
the total number of positive samples is less than 1, no positive samples are rejected as
negatives.

The function calculates the number of positive samples to use at each stage using the
following formula:

number of positive samples = floor(totalPositiveSamples /(1 +
(NumCascadeStages - 1) * (1 - TruePositiveRate)))

This calculation does not guarantee that the same number of positive samples are
available for each stage. The reason is that it is impossible to predict with certainty how
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many positive samples will be rejected as negatives. The training continues as long as the
number of positive samples available to train a stage is greater than 10% of the number
of samples the function determined automatically using the preceding formula. If there
are not enough positive samples the training stops and the function issues a warning. The
function also outputs a classifier consisting of the stages that it had trained up to that
point. If the training stops, you can add more positive samples. Alternatively, you can
increase TruePositiveRate. Reducing the number of stages can also work, but such
reduction can also result in a higher overall false alarm rate.

What to do if you run out of negative samples?

The function calculates the number of negative samples used at each stage. This
calculation is done by multiplying the number of positive samples used at each stage by
the value of NegativeSamplesFactor.

Just as with positive samples, there is no guarantee that the calculated number of
negative samples are always available for a particular stage. The
trainCascadeObjectDetector function generates negative samples from the negative
images. However, with each new stage, the overall false alarm rate of the cascade
classifier decreases, making it less likely to find the negative samples.

The training continues as long as the number of negative samples available to train a
stage is greater than 10% of the calculated number of negative samples. If there are not
enough negative samples, the training stops and the function issues a warning. It outputs
a classifier consisting of the stages that it had trained up to that point. When the training
stops, the best approach is to add more negative images. Alternatively, you can reduce
the number of stages or increase the false positive rate.

Examples
Train a Five-Stage Stop-Sign Detector

This example shows you how to set up and train a five-stage, stop-sign detector, using 86
positive samples. The default value for TruePositiveRate is 0.995.

Step 1: Load the positive samples data from a MAT-file. In this example, file names and
bounding boxes are contained in the array of structures labeled 'data’.

load('stopSigns.mat');

Step 2: Add the image directory to the MATLAB path.
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imDir = fullfile(matlabroot, 'toolbox"', 'vision', 'visiondata', 'stopSignImages');
addpath(imDir);

Step 3: Specify the folder with negative images.

negativeFolder = fullfile(matlabroot, 'toolbox', 'vision', 'visiondata', 'nonStopSigns');

Step 4: Train the detector.

trainCascadeObjectDetector('stopSignDetector.xml',6data,negativeFolder, 'FalseAlarmRate',0.2, 'NumCascadeStages',5);

Computer Vision Toolbox software returns the following message:

Automatically setting ObjectIrainingSize to [ 33, 32 ]
Using at most 86 of 86 positive samples per stage
Using at most 172 negative samples per stage
Training stage 1 of S

Used 86 positive and 172 negative =samples
Training stage 2 of 5

Used 86 pos=sitive and 172 negative =amples
Training stage 3 of S

Used 86 positive and 172 negative samples
Training stage 4 of S

Used 86 positive and 172 negative =samples
Training =stage 5 of 5

Used 86 pos=sitive and 172 negative =amples

Training complete

All 86 positive samples were used to train each stage. This high rate occurs because the
true positive rate is very high relative to the number of positive samples.
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Train a Five-Stage Stop-Sign Detector with a Decreased True Positive Rate

This example shows you how to train a stop-sign detector on the same data set as the first
example, (steps 1-3), but with the TruePositiveRate decreased to 0.98.

Step 4: Train the detector.

trainCascadeObjectDetector('stopSignDetector tpr6 98.xml',6data,negativeFolder,...

'FalseAlarmRate',0.2, 'NumCascadeStages', 5,...
'TruePositiveRate', 0.98);

Antomatically setting ObjectTrainingSize to [ 23, 32 ]
Using at most 79 of 86 positive samples per stage
Using at most 158 negative samples per stage
Training stage 1 of 5

Used 79 positive and 158 negative samples
Training =stage 2 of 5

Used 79 positive and 158 negative samples
Training =tage 3 of &

Used 79 pos=sitive and 158 negative =amples
Training stage 4 of 5

Used 7% positive and 158 negative =amples
Training stage 5 of 5

Used 79 positive and 85 negative =samples

Training complete

Only 79 of the total 86 positive samples were used to train each stage. This lowered rate
occurs because the true positive rate was low enough for the function to start rejecting
some of the positive samples as false negatives.
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Train a Ten-Stage Stop-Sign Detector

This example shows you how to train a stop-sign detector on the same data set as the first
example, (steps 1-3), but with the number of stages increased to 10.

Step 4: Train the detector.

trainCascadeObjectDetector('stopSignDetector 10stages.xml',data,negativeFolder,...
'FalseAlarmRate',0.2, 'NumCascadeStages',10);
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utomatically setting ObjectTrainingSize to [ 33, 32 ]

Using at most 86 of Bé& positive samples per stage

Using at mo=st 172 negative sample=s per =stage

Training stage 1 of lﬂtg

U=sed 86 positive and 172 negative =samples

Training stage 2 of 10

Used 86 positive and 172 negative sanmples

Training stage 3 of 10

Used 86 positive and 172 negative samples

Training stage 4 of 10

Used 86 positive and 172 negative =samples

Training stage 5 of 10

Used 86 positive and 172 negative sanmples

Training stage & of 10

Used 86 positive and 33 negative samples

Training stage 7 of 10

Unable to generate a sufficient number of negative sample=z for this stage.
Consider reducing the number of stages, reducing the false alarm rate
or adding more negative images.

Cannot find enough samples for training.

Training will halt and return cascade detector with & stages
Training complete
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In this case, NegativeSamplesFactor was set to 2, therefore the number of negative
samples used to train each stage was 172. Notice that the function generated only 33
negative samples for stage 6 and was not able to train stage 7 at all. This condition occurs
because the number of negatives in stage 7 was less than 17, (roughly half of the previous
number of negative samples). The function produced a stop-sign detector with 6 stages,
instead of the 10 previously specified. The resulting overall false alarm rate is
0.27=1.28e-05, while the expected false alarm rate is 1.024e-07.

At this point, you can add more negative images, reduce the number of stages, or
increase the false positive rate. For example, you can increase the false positive rate,
FalseAlarmRate, to 0.5. The expected overall false-positive rate in this case is 0.0039.
Step 4: Train the detector.

trainCascadeObjectDetector('stopSignDetector 10stages far® 5.xml',data,negativeFolder,...
'FalseAlarmRate',0.5, 'NumCascadeStages',10);

7-199



7 Object Detection

Automatically setting ObjectTrainingSize to [ 33, 32 ]
Uszing at most 86 of 86 positive =sample= per stage
Using at most 172 negative samples per stage

Training stage 1 of 10

Used 86 pos=sitive and 172 negative =szamples

Training stage 2 of 10 I
Uszsed 86 positive and 172 negative samples

Training =stage 3 of 10

Uszed 86 positive and 172 negative =samples

Training =tage 4 of 10

Used 86 pos=sitive and 172 negative =samples

Training stage 5 of 10

Uzed 86 positive and 172 negative samples

Training =stage &6 of 10

Uzed 86 positive and 172 negative =samples

Training =stage 7 of 10

Uzed 86 positive and 172 negative =samples

Training stage 8 of 10

Used 86 pos=sitive and 172 negative =szamples

Training stage 9 of 10

Very low false alarm rate 0.000587108 reached in =stage.
Training will halt and return cascade detector with & stages
71296ning complete
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This time the function trains eight stages before the threshold reaches the overall false
alarm rate of 0.000587108 and training stops.

Train Stop Sign Detector

Load the positive samples data from a MAT file. The file contains a table specifying
bounding boxes for several object categories. The table was exported from the Training
Image Labeler app.

Load positive samples.

load('stopSignsAndCars.mat');

Select the bounding boxes for stop signs from the table.

positivelnstances = stopSignsAndCars(:,1:2);

Add the image folder to the MATLAB path.

imDir = fullfile(matlabroot, 'toolbox', 'vision', 'visiondata', ...
'stopSignImages');

addpath(imDir);

Specify the folder for negative images.

negativeFolder = fullfile(matlabroot, 'toolbox', 'vision', 'visiondata', ...
‘nonStopSigns');

Create an imageDatastore object containing negative images.
negativelmages = imageDatastore(negativeFolder);

Train a cascade object detector called 'stopSignDetector.xml' using HOG features. NOTE:
The command can take several minutes to run.

trainCascadeObjectDetector('stopSignDetector.xml',6 positivelnstances,
negativeFolder, 'FalseAlarmRate',0.1, 'NumCascadeStages',5);

Automatically setting ObjectTrainingSize to [35, 32]
Using at most 42 of 42 positive samples per stage
Using at most 84 negative samples per stage

- -cascadeParams- -
Training stage 1 of 5
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Used 42 positive and 84 negative samples
Time to train stage 1: 1 seconds

Training stage 2 of 5

Used 42 positive and 84 negative samples
Time to train stage 2: 0 seconds

Training stage 3 of 5

Used 42 positive and 84 negative samples
Time to train stage 3: 3 seconds

Training stage 4 of 5

Used 42 positive and 84 negative samples
Time to train stage 4: 8 seconds

Training stage 5 of 5

Used 42 positive and 17 negative samples
Time to train stage 5: 14 seconds

Training complete
Use the newly trained classifier to detect a stop sign in an image.
detector = vision.CascadeObjectDetector('stopSignDetector.xml');
Read the test image.
img = imread('stopSignTest.jpg');
Detect a stop sign.
bbox = step(detector,img);
Insert bounding box rectangles and return the marked image.
detectedImg = insertObjectAnnotation(img, 'rectangle’,bbox, 'stop sign');

Display the detected stop sign.

figure; imshow(detectedImg);
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Remove the image directory from the path.

rmpath(imDir);

See Also

More About
. “Get Started with the Image Labeler” on page 7-100

External Websites
. Cascade Trainer
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Train Optical Character Recognition for Custom Fonts

7-204

In this section...

“Open the OCR Trainer App” on page 7-204
“Train OCR” on page 7-204

“App Controls” on page 7-207

The optical character recognition (OCR) app trains the ocr function to recognize a
custom language or font. You can use this app to label character data interactively for
OCR training and to generate an OCR language data file for use with the ocr function.

lﬁ.dd images| 4| Edit labels | 1 Train OCR | ]vErify Training.

Open the OCR Trainer App
* MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer

Vision, click lAJ the OCR app icon.
* MATLAB command prompt: Enter ocrTrainer.

Train OCR

1 In the OCR Trainer, click New Session to open the OCR Training Session Settings
dialog box.

2  Under Output Settings, enter a name for the OCR language data file and choose the

output folder location for the file. The location you specify must be writable.
3 Under Labeling Method, either label the data manually or pre-label it using optical

character recognition. If you use OCR, you can select either the pre-installed English

or Japanese language, or you can download additional language support files.

Note To download a language support file, type visionSupportPackages in a
MATLAB Command Window. Alternatively, on the MATLAB Home tab, in the
Environment section, click Add-Ons > Get Add-Ons. Then use the search box to
find “Computer Vision System Toolbox OCR Language Data.”
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Add images at any time during the training session. The trainer automatically
segments the images for OCR training. Inspect the results to verify expected text
segmentation. To improve the segmentation, pre-process your images using the
Image Segmenter app. Once the images are added, you can inspect segmentation
results from the training image view.

Original Segmented Text

i
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E4Y2C8 t IEBSN 1356081 153534
Igldaed 13%oHS 2L oiea03d
Nase34086392663 (04 113815
19292306 1I0M136360968TBIESS
c24eBI050890906T5BB6 12 10
169349969 13622B549E155550
1933938442 13MI6CEE5103122
E4E2 1879 1 104 1ACOEM2 13259

To limit the OCR to a specific character set, select the Character set check box and
add the characters.

Note Use training images that contain text that you want OCR to recognize. Do not
use training images with only a few characters. OCR training works best if training
images contain blocks of many words. You can use the insertText function to
automatically generate training images for a known font.

I = zeros(500,500,3, 'uint8');

textLines = [
"some training text"
"even more stuff to learn"
|

lineYLocation = 50;

for i 1:numel(textLines)
I = insertText(I,[50 lineYLocation],char(textLines(i)),
'"Font', 'LucidaSansRegular’, ...
'FontSize', 16, 'TextColor', 'white', ...
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'BoxOpacity',0);

% increment to next line
lineYLocation = lineYLocation + 20;
end
figure
imshow(I)
5 Remove any noisy images. To improve segmentation results, you can draw a region of
interest to select a portion of an image. The display shows the original image on the
left and the edited one on the right. When you are done, click Accept All.

6 Modify the extracted samples from the character view window.

» To correct samples, select a group of samples from the Data Browser pane and
change the labels using the Character Label field.

* To exclude a sample from training, right-click the sample and select the option to
move that sample to the Unknown category. Unknown samples are listed at the
top of the Data Browser pane and are not used for training.

+ If the bounding box clipped a character, double-click the character and modify it
in the image it was extracted from.
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7  After correcting the samples, click Train. When the trainer completes training, the
app creates an OCR language data file and saves it to the folder you specified.

App Controls
Sessions

Starts a new session, opens a saved session, or adds a session to the current one. You can
also save and name the session. The sessions are saved as MAT files.

Add Images

Adds images. You can add images when you start a new session or after you accept the
current collection of images.

Settings

Set or change the font display.

Edit Box

Selects the image that contains the selected character, along with the bounding boxes.
You can create additional regions, merge, modify, or delete existing images. To delete an
ROI, use the delete key.

Train

Creates an OCR data file from the session. To use the .traineddata file with the ocr
function, set the 'Language' property for the ocr function, and follow the directions for
a custom language.

Generate Function

Creates an autogenerated evaluation function for verification of training results.

See Also

OCR Trainer | ocr
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Troubleshoot ocr Function Results
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Performance Options with the ocr Function

If your ocr results are not what you expect, try one or more of the following options:

Increase image size 2-to-4 times larger.

If the characters in the image are too close together or their edges are touching, use
morphology to thin out the characters. Using morphology to thin out the characters
separates the characters.

Use binarization to check for non-uniform lighting issues. Use the graythresh and

imbinarize functions to binarize the image. If the characters are not visible in the

results of the binarization, it indicates a potential non-uniform lighting issue. Try top
hat, using the imtophat function, or other techniques that deal with removing non-

uniform illumination.

Use the region of interest roi option to isolate the text. Specify the roi manually or
use text detection.

If your image looks like a natural scene containing words, like a street scene, rather
than a scanned document, try setting the TextLayout property to either 'Block' or
‘Word".

See Also

graythresh | imbinarize | imtophat | ocr | ocrText | visionSupportPackages

More About

“Install Computer Vision Toolbox Add-on Support Files” on page 3-2
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Create a Custom Feature Extractor

You can use the bag-of-features (BoF) framework with many different types of image
features. To use a custom feature extractor instead of the default speeded-up robust
features (SURF) feature extractor, use the CustomExtractor property of a
bagOfFeatures ohject.

Example of a Custom Feature Extractor

This example shows how to write a custom feature extractor function for
bagOfFeatures. You can open this example function file and use it as a template by
typing the following command at the MATLAB command prompt:

edit('exampleBagOfFeaturesExtractor.m')

* Step 1. Define the image sets.

» Step 2. Create a new extractor function file.

* Step 3. Preprocess the image.

» Step 4. Select a point location for feature extraction.
* Step 5. Extract features.

* Step 6. Compute the feature metric.

Define the set of images and labels

Read the category images and create image sets.

setDir = fullfile(toolboxdir('vision'), 'visiondata', 'imageSets');

imds = imageDatastore(setDir, 'IncludeSubfolders', true, 'LabelSource’, ...
'foldernames');

Create a new extractor function file

The extractor function must be specified as a function handle:

extractorFcn = @exampleBagOfFeaturesExtractor;
bag = bagOfFeatures(imgSets, 'CustomExtractor',extractorFcn)

exampleBagOfFeaturesExtractor is a MATLAB function. For example:

function [features, featureMetrics] = exampleBagOfFeaturesExtractor(img)
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You can also specify the optional Location output:

function [features, featureMetrics,location] = exampleBagOfFeaturesExtractor(img)

The function must be on the path or in the current working folder.

Argument Input/Output Description
img Input » Binary, grayscale, or truecolor image.

* The input image is from the image set that was originally

passed into bagO0fFeatures.

features Output * An M-by-N numeric matrix of image features, where M is
the number of features and N is the length of each
feature vector.

* The feature length, N, must be greater than zero and be
the same for all images processed during the
bagOfFeatures creation process.

* Ifyou cannot extract features from an image, supply an
empty feature matrix and an empty feature metrics
vector. Use the empty matrix and vector if, for example,
you did not find any keypoints for feature extraction.

* Numeric, real, and nonsparse.

featureMetric |Output * An M-by-1 vector of feature metrics indicating the
S strength of each feature vector.

* Used to apply the 'SelectStrongest' criteria in
bagOfFeatures framework.

* Numeric, real, and nonsparse.

location Output * An M-by-2 matrix of 1-based [x y] values.

The [x y] values can be fractional.
Numeric, real, and nonsparse.

Preprocess the image

Input images can require preprocessing before feature extraction. To extract SURF
features and to use the detectSURFFeatures or detectMSERFeatures functions, the
images must be grayscale. If the images are not grayscale, you can convert them using
the rgb2gray function.
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[height,width,numChannels] = size(I);
if numChannels > 1
grayImage = rgb2gray(I);
else
grayImage = I;
end

Select a point location for feature extraction

Use a regular spaced grid of point locations. Using the grid over the image allows for
dense SURF feature extraction. The grid step is in pixels.

gridStep = 8;
gridX = l:gridStep:width;
gridY = 1l:gridStep:height;

[x,y] = meshgrid(gridX,gridY);
gridLocations = [x(:) y(:)];

You can manually concatenate multiple SURFPoints objects at different scales to achieve
multiscale feature extraction.
multiscaleGridPoints = [SURFPoints(gridLocations, 'Scale',1.6);
SURFPoints(gridLocations, 'Scale',3.2);
SURFPoints(gridLocations, 'Scale',4.8);
SURFPoints(gridLocations, 'Scale',6.4)];

Alternatively, you can use a feature detector, such as detectSURFFeatures or
detectMSERFeatures, to select point locations.

multiscaleSURFPoints = detectSURFFeatures(I);
Extract features

Extract features from the selected point locations. By default, bagOfFeatures extracts
upright SURF features.

features = extractFeatures(grayImage,multiscaleGridPoints, 'Upright', true);
Compute the feature metric

The feature metrics indicate the strength of each feature. Larger metric values are
assigned to stronger features. Use feature metrics to identify and remove weak features
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before using bag0fFeatures to learn the visual vocabulary of an image set. Use the
metric that is suitable for your feature vectors.

For example, you can use the variance of the SURF features as the feature metric.

featureMetrics = var(features,[],2);

If you used a feature detector for the point selection, then use the detection metric
instead.

featureMetrics = multiscaleSURFPoints.Metric;

You can optionally return the feature location information. The feature location can be
used for spatial or geometric verification image search applications. See the “Geometric
Verification Using estimateGeometricTransform Function” example. The
retrievelmages and indexImages functions are used for content-based image
retrieval systems.

if nargout > 2
varargout{l} = multiscaleGridPoints.Location;
end



Image Retrieval with Bag of Visual Words

Image Retrieval with Bag of Visual Words

You can use the Computer Vision Toolbox functions to search by image, also known as a
content-based image retrieval (CBIR) system. CBIR systems are used to retrieve images
from a collection of images that are similar to a query image. The application of these
types of systems can be found in many areas such as a web-based product search,
surveillance, and visual place identification. First the system searches a collection of
images to find the ones that are visually similar to a query image.

The retrieval system uses a bag of visual words, a collection of image descriptors, to
represent your data set of images. Images are indexed to create a mapping of visual
words. The index maps each visual word to their occurrences in the image set. A
comparison between the query image and the index provides the images most similar to
the query image. By using the CBIR system workflow, you can evaluate the accuracy for a
known set of image search results.
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Create image set
imds = imageDatastore(imageFolder)

Type of feature for retrieval?

Use custom feature extractor
extractor = @yourOwnExtractor

Create bag of visual words

[imds = image])atastore(traininglmagesFoIder)]Optional
bag=bagOfFeatures(imds, ‘CustomExtractor, extractor)

v v

Index images
imagelndex=indexImages(imds) imagelndex = indexImages(imds, bag)

Search image set

imagelDs =retrieveImages(querylmage, imagelndex)
[imagelDs, scores] =retrieveImages(querylmage, imagelndex)
[imagelDs, scores, imageWords] = retrieveImages(querylmage, imagelndex)

imagelndex 150 1so [
/ Wo 11, Is1, 100, l120, ... ) :
o ' [ 1 8
. 23
19
3

visual words

l19 n
I3 u

imagelDs

query image :
Wh-1 11, 173, 1100, l233, ...
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Retrieval System Workflow

1

Create image set that represents image features for retrieval. Use
imageDatastore to store the image data. Use a large number of images that
represent various viewpoints of the object. A large and diverse number of images
helps train the bag of visual words and increases the accuracy of the image search.

Type of feature. The indexImages function creates the bag of visual words using
the speeded up robust features (SURF). For other types of features, you can use a
custom extractor, and then use bag0fFeatures to create the bag of visual words.
See the “Create Search Index Using Custom Bag of Features” example.

You can use the original imgSet or a different collection of images for the training
set. To use a different collection, create the bag of visual words before creating the
image index, using the bag0OfFeatures function. The advantage of using the same
set of images is that the visual vocabulary is tailored to the search set. The
disadvantage of this approach is that the retrieval system must relearn the visual
vocabulary to use on a drastically different set of images. With an independent set,
the visual vocabulary is better able to handle the additions of new images into the
search index.

Index the images. The indexImages function creates a search index that maps
visual words to their occurrences in the image collection. When you create the bag of
visual words using an independent or subset collection, include the bag as an input
argument to indexImages. If you do not create an independent bag of visual words,
then the function creates the bag based on the entire imgSet input collection. You
can add and remove images directly to and from the image index using the
addImages and removeImages methods.

Search data set for similar images. Use the retrieveImages function to search
the image set for images which are similar to the query image. Use the NumResults
property to control the number of results. For example, to return the top 10 similar
images, set the ROI property to use a smaller region of a query image. A smaller
region is useful for isolating a particular object in an image that you want to search
for.

Evaluate Image Retrieval

Use the evaluateImageRetrieval function to evaluate image retrieval by using a
query image with a known set of results. If the results are not what you expect, you can

modify or augment image features by the bag of visual words. Examine the type of the
features retrieved. The type of feature used for retrieval depends on the type of images
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within the collection. For example, if you are searching an image collection made up of
scenes, such as beaches, cities, or highways, use a global image feature. A global image
feature, such as a color histogram, captures the key elements of the entire scene. To find
specific objects within the image collections, use local image features extracted around
object keypoints instead.

See Also

Related Examples

. “Image Retrieval Using Customized Bag of Features”
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Image Classification with Bag of Visual Words

Use the Computer Vision Toolbox functions for image category classification by creating a
bag of visual words. The process generates a histogram of visual word occurrences that
represent an image. These histograms are used to train an image category classifier. The
steps below describe how to setup your images, create the bag of visual words, and then
train and apply an image category classifier.

Step 1: Set Up Image Category Sets

Organize and partition the images into training and test subsets. Use the
imageDatastore function to store images to use for training an image classifier.
Organizing images into categories makes handling large sets of images much easier. You
can use the splitEachLabel function to split the images into training and test data.

Read the category images and create image sets.
setDir = fullfile(toolboxdir('vision'), 'visiondata', 'imageSets');

imds = imageDatastore(setDir, 'IncludeSubfolders',true, 'LabelSource',...
'foldernames');

Separate the sets into training and test image subsets. In this example, 30% of the images
are partitioned for training and the remainder for testing.

[trainingSet,testSet] = splitEachLabel(imds, 0.3, 'randomize');
i\ 4 :
S o g4
& STE
> { trainingSets
¥ partition - % '1
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Step 2: Create Bag of Features

Create a visual vocabulary, or bag of features, by extracting feature descriptors from
representative images of each category.

The bagOfFeatures object defines the features, or visual words, by using the k-means
clustering (Statistics and Machine Learning Toolbox) algorithm on the feature descriptors
extracted from trainingSets. The algorithm iteratively groups the descriptors into k
mutually exclusive clusters. The resulting clusters are compact and separated by similar
characteristics. Each cluster center represents a feature, or visual word.

You can extract features based on a feature detector, or you can define a grid to extract
feature descriptors. The grid method may lose fine-grained scale information. Therefore,
use the grid for images that do not contain distinct features, such as an image containing
scenery, like the beach. Using speeded up robust features (or SURF) detector provides
greater scale invariance. By default, the algorithm runs the 'grid' method.

extract keypoints feature descriptors clustering vocabulary visual words
feature detection

5 feature vector . B
o Yage (o] 4 -
"h"" Y ‘/\ /1 e
S n..‘f:'r 4 o O o f-»a;': S 3
XY °
o'-hQ: o Lo = -

This algorithm workflow analyzes images in their entirety. Images must have appropriate
labels describing the class that they represent. For example, a set of car images could be
labeled cars. The workflow does not rely on spatial information nor on marking the
particular objects in an image. The bag-of-visual-words technique relies on detection
without localization.

Step 3: Train an Image Classifier With Bag of Visual Words

The trainImageCategoryClassifier function returns an image classifier. The
function trains a multiclass classifier using the error-correcting output codes (ECOC)
framework with binary support vector machine (SVM) classifiers. The
trainImageCategoryClassfier function uses the bag of visual words returned by the



Image Classification with Bag of Visual Words

bagOfFeatures object to encode images in the image set into the histogram of visual
words. The histogram of visual words are then used as the positive and negative samples
to train the classifier.

1 Use the bag0OfFeatures encode method to encode each image from the training
set. This function detects and extracts features from the image and then uses the
approximate nearest neighbor algorithm to construct a feature histogram for each
image. The function then increments histogram bins based on the proximity of the
descriptor to a particular cluster center. The histogram length corresponds to the
number of visual words that the bagOfFeatures object constructed. The histogram
becomes a feature vector for the image.

image approximate nearest neighbor feature histogram feature vector
E

i 3
< LL TP T
@)
=

12345~
visual word index

2 Repeat step 1 for each image in the training set to create the training data.

3 Evaluate the quality of the classifier. Use the imageCategoryClassifier
evaluate method to test the classifier against the validation image set. The output
confusion matrix represents the analysis of the prediction. A perfect classification
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results in a normalized matrix containing 1s on the diagonal. An incorrect
classification results fractional values.

classify
— Dot  —a
—) Nt X confusion matrix
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Step 4: Classify an Image or Image Set

Use the imageCategoryClassifier predict method on a new image to determine its
category.

References

[1] Csurka, G., C. R. Dance, L. Fan, ]J. Willamowski, and C. Bray. Visual Categorization with
Bags of Keypoints. Workshop on Statistical Learning in Computer Vision. ECCV 1
(1-22), 1-2.

See Also

Related Examples

. “Image Category Classification Using Bag of Features”
. “Image Retrieval Using Customized Bag of Features”



Motion Estimation and Tracking

* “Multiple Object Tracking” on page 8-2

* “Video Mosaicking” on page 8-6

* “Pattern Matching” on page 8-13
“Pattern Matching” on page 8-20
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Multiple Object Tracking
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Tracking is the process of locating a moving object or multiple objects over time in a
video stream. Tracking an object is not the same as object detection. Object detection is
the process of locating an object of interest in a single frame. Tracking associates
detections of an object across multiple frames.

Tracking multiple objects requires detection, prediction, and data association.

* Detection: Detect objects of interest in a video frame.
* Prediction: Predict the object locations in the next frame.

* Data association: Use the predicted locations to associate detections across frames
to form tracks.

Detection

Selecting the right approach for detecting objects of interest depends on what you want
to track and whether the camera is stationary.

Detect Objects Using a Stationary Camera

To detect objects in motion with a stationary camera, you can perform background
subtraction using the vision.ForegroundDetector System object. The background
subtraction approach works efficiently but requires the camera to be stationary.

Detect Objects Using a Moving Camera

To detect objects in motion with a moving camera, you can use a sliding-window detection
approach. This approach typically works more slowly than the background subtraction
approach. To detect and track a specific category of object, use the System objects or
functions described in the table.

Select A Detection Algorithm

Type of Object to Track Camera Functionality

Anything that moves Stationary vision.ForegroundDetector
System object

Faces, eyes, nose, mouth, Stationary, vision.CascadeObjectDetector

upper body Moving System object
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Type of Object to Track Camera Functionality
Pedestrians Stationary, vision.PeopleDetector System
Moving object
Custom object category Stationary, trainCascadeObjectDetector
Moving function
or
custom sliding window detector using
extractHOGFeatures and
selectStrongestBbox

Prediction

To track an object over time means that you must predict its location in the next frame.
The simplest method of prediction is to assume that the object will be near its last known
location. In other words, the previous detection serves as the next prediction. This
method is especially effective for high frame rates. However, using this prediction method
can fail when objects move at varying speeds, or when the frame rate is low relative to
the speed of the object in motion.

A more sophisticated method of prediction is to use the previously observed motion of the
object. The Kalman filter (vision.KalmanFilter) predicts the next location of an
object, assuming that it moves according to a motion model, such as constant velocity or
constant acceleration. The Kalman filter also takes into account process noise and
measurement noise. Process noise is the deviation of the actual motion of the object from
the motion model. Measurement noise is the detection error.

To make configuring a Kalman filter easier, use configureKalmanFilter. This function
sets up the filter for tracking a physical object moving with constant velocity or constant
acceleration within a Cartesian coordinate system. The statistics are the same along all
dimensions. If you need to configure a Kalman filter with different assumptions, you need
to construct the vision.KalmanFilter object directly.

Data Association

Data association is the process of associating detections corresponding to the same
physical object across frames. The temporal history of a particular object consists of
multiple detections, and is called a track. A track representation can include the entire
history of the previous locations of the object. Alternatively, it can consist only of the
object's last known location and its current velocity.
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Detection to Track Cost Functions

To match a detection to a track, you must establish criteria for evaluating the matches.
Typically, you establish this criteria by defining a cost function. The higher the cost of
matching a detection to a track, the less likely that the detection belongs to the track. A
simple cost function can be defined as the degree of overlap between the bounding boxes
of the predicted and detected objects. The “Tracking Pedestrians from a Moving Car”
example implements this cost function using the bboxOverlapRatio function. You can
implement a more sophisticated cost function, one that accounts for the uncertainty of the
prediction, using the distance function of the vision.KalmanFilter object. You can
also implement a custom cost function than can incorporate information about the object
size and appearance.

Elimination of Unlikely Matches

Gating is a method of eliminating highly unlikely matches from consideration, such as by
imposing a threshold on the cost function. An observation cannot be matched to a track if
the cost exceeds a certain threshold value. Using this threshold method effectively results
in a circular gating region around each prediction, where a matching detection can be
found. An alternative gating technique is to make the gating region large enough to
include the k-nearest neighbors of the prediction.

Assign Detections to Track

Data association reduces to a minimum weight bipartite matching problem, which is a
well-studied area of graph theory. A bipartite graph represents tracks and detections as
vertices. It also represents the cost of matching a detection and a track as a weighted
edge between the corresponding vertices.

The assignDetectionsToTracks function implements the Munkres' variant of the
Hungarian bipartite matching algorithm. Its input is the cost matrix, where the rows
correspond to tracks and the columns correspond to detections. Each entry contains the
cost of assigning a particular detection to a particular track. You can implement gating by
setting the cost of impossible matches to infinity.

Track Management

Data association must take into account the fact that new objects can appear in the field
of view, or that an object being tracked can leave the field of view. In other words, in any
given frame, some number of new tracks might need to be created, and some number of
existing tracks might need to be discarded. The assignDetectionsToTracks function



See Also

returns the indices of unassigned tracks and unassigned detections in addition to the
matched pairs.

One way of handling unmatched detections is to create a new track from each of them.
Alternatively, you can create new tracks from unmatched detections greater than a
certain size, or from detections that have certain locations or appearance. For example, if
the scene has a single entry point, such as a doorway, then you can specify that only
unmatched detections located near the entry point can begin new tracks, and that all
other detections are considered noise.

Another way of handling unmatched tracks is to delete any track that remain unmatched
for a certain number of frames. Alternatively, you can specify to delete an unmatched
track when its last known location is near an exit point.

See Also

assignDetectionsToTracks | bboxOverlapRatio | configureKalmanFilter |
extractHOGFeatures | selectStrongestBbox | trainCascadeObjectDetector |
vision.CascadeObjectDetector | vision.ForegroundDetector |
vision.KalmanFilter | vision.PeopleDetector | vision.PointTracker

Related Examples

. “Tracking Pedestrians from a Moving Car”
. “Using Kalman Filter for Object Tracking”
. “Motion-Based Multiple Object Tracking”

More About
. “Train a Cascade Object Detector” on page 7-187

External Websites
. Detect and Track Multiple Faces


https://www.mathworks.com/matlabcentral/fileexchange/47105-detect-and-track-multiple-faces
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Video Mosaicking

This example shows how to create a mosaic from a video sequence. Video mosaicking is
the process of stitching video frames together to form a comprehensive view of the scene.
The resulting mosaic image is a compact representation of the video data. The Video
Mosaicking block is often used in video compression and surveillance applications.

This example illustrates how to use the Corner Detection block, the Estimate Geometric
Transformation block, the Projective Transform block, and the Compositing block to
create a mosaic image from a video sequence.

Example Model

The following figure shows the Video Mosaicking model:

Video Mosaicking
Real Video Imag o Image
E Image
o\o—» Mods [ ’ > Pist » Pis1 [——* TFem
o TForm
- N . P Mosaic i Mosaic
Synthetic videa Switch Start Comer Loc P Fiz PieZ # Fis2 Similarity Inlier
| -
Detection Inliar

Double-click the Swilch to Inpust Gount ¥ rum tem F e Resst Pz
change video source. -
Corner Matching —
Mosaicking isplay
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The Input subsystem loads a video sequence from either a file, or generates a synthetic
video sequence. The choice is user defined. First, the Corner Detection block finds points
that are matched between successive frames by the Corner Matching subsystem. Then
the Estimate Geometric Transformation block computes an accurate estimate of the
transformation matrix. This block uses the RANSAC algorithm to eliminate outlier input
points, reducing error along the seams of the output mosaic image. Finally, the
Mosaicking subsystem overlays the current video frame onto the output image to
generate a mosaic.

Input Subsystem

The Input subsystem can be configured to load a video sequence from a file, or to
generate a synthetic video sequence.
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If you choose to use a video sequence from a file, you can reduce computation time by
processing only some of the video frames. This is done by setting the downsampling rate
in the Frame Rate Downsampling subsystem.

If you choose a synthetic video sequence, you can set the speed of translation and
rotation, output image size and origin, and the level of noise. The output of the synthetic
video sequence generator mimics the images captured by a perspective camera with
arbitrary motion over a planar surface.

Corner Matching Subsystem

The subsystem finds corner features in the current video frame in one of three methods.
The example uses Local intensity comparison (Rosen & Drummond), which is the fastest
method. The other methods available are the Harris corner detection (Harris & Stephens)
and the Minimum Eigenvalue (Shi & Tomasi).
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The Corner Matching Subsystem finds the number of corners, location, and their metric
values. The subsystem then calculates the distances between all features in the current
frame with those in the previous frame. By searching for the minimum distances, the
subsystem finds the best matching features.

Mosaicking Subsystem

By accumulating transformation matrices between consecutive video frames, the
subsystem calculates the transformation matrix between the current and the first video
frame. The subsystem then overlays the current video frame on to the output image. By
repeating this process, the subsystem generates a mosaic image.
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The subsystem is reset when the video sequence rewinds or when the Estimate Geometric
Transformation block does not find enough inliers.

8-8



Video Mosaicking

Video Mosaicking Using Synthetic Video
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The Corners window shows the corner locations in the current video frame.

The Mosaic window shows the resulting mosaic image.
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Video Mosaicking Using Captured Video

The Corners window shows the corner locations in the current video frame.
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The Mosaic window shows the resulting mosaic image.
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Pattern Matching

Pattern Matching

This example shows how to use the 2-D normalized cross-correlation for pattern matching
and target tracking. The example uses predefined or user specified target and number of
similar targets to be tracked. The normalized cross correlation plot shows that when the
value exceeds the set threshold, the target is identified.

Introduction

In this example you use normalized cross correlation to track a target pattern in a video.
The pattern matching algorithm involves the following steps:

* The input video frame and the template are reduced in size to minimize the amount of
computation required by the matching algorithm.

* Normalized cross correlation, in the frequency domain, is used to find a template in
the video frame.

* The location of the pattern is determined by finding the maximum cross correlation
value.

Initialize Parameters and Create a Template

Initialize required variables such as the threshold value for the cross correlation and the
decomposition level for Gaussian Pyramid decomposition.

threshold = single(0.99);
level =

Prepare a video file reader.

hVideoSrc = vision.VideoFileReader('vipboard.mp4',
'VideoOutputDataType', 'single',
'ImageColorSpace', 'Intensity');

Specify the target image and number of similar targets to be tracked. By default, the
example uses a predefined target and finds up to 2 similar patterns. You can set the
variable useDefaultTarget to false to specify a new target and the number of similar
targets to match.

useDefaultTarget = true;

[Img, numberOfTargets, target image] =
videopattern_ gettemplate(useDefaultTarget)
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% Downsample the target image by a predefined factor. You do this
% to reduce the amount of computation needed by cross correlation.
target image = single(target image);

target dim nopyramid = size(target image);

target image gp = multilevelPyramid(target image, level);

target _energy = sqrt(sum(target image gp(:)."2));

% Rotate the target image by 180 degrees, and perform zero padding so that
% the dimensions of both the target and the input image are the same.
target image rot = imrotate(target image gp, 180);

[rt, ct] = size(target image rot);

Img single(Img);

Img multilevelPyramid(Img, level);

[ri, ci]= size(Img);

r mod = 2%nextpow2(rt + ri);

c_mod = 2"nextpow2(ct + ci);

target image p [target _image rot zeros(rt, c mod-ct)];

target image p [target _image p; zeros(r _mod-rt, c mod)];

% Compute the 2-D FFT of the target image
target fft = fft2(target image p);

% Initialize constant variables used in the processing loop.
target size = repmat(target dim nopyramid, [numberOfTargets, 11);
gain = 2" (level);

Im p = zeros(r_mod, c mod, 'single');
C ones = ones(rt, ct, 'single');

% Used for zero padding

% Used to calculate mean using conv
Create a System object to calculate the local maximum value for the normalized cross
correlation.

hFindMax = vision.LocalMaximaFinder (
'Threshold', single(-1),
'"MaximumNumLocalMaxima', numberOfTargets,
'"NeighborhoodSize', floor(size(target image gp)/2)*2 - 1);

Create a System object to display the tracking of the pattern.

sz = get(0, 'ScreenSize');

pos = [20 sz(4)-400 400 300];

hROIPattern = vision.VideoPlayer('Name', 'Overlay the ROI on the target',
'Position', pos);

Initialize figure window for plotting the normalized cross correlation value
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hPlot = videopatternplots('setup',numberOfTargets, threshold);
Search for a Template in Video

Create a processing loop to perform pattern matching on the input video. This loop uses
the System objects you instantiated above. The loop is stopped when you reach the end of
the input file, which is detected by the VideoFileReader System object.

while ~isDone(hVideoSrc)
Im = step(hVideoSrc);

% Reduce the image size to speed up processing
Im gp = multilevelPyramid(Im, level);

% Frequency domain convolution.

Im p(l:ri, 1l:ci) = Im gp; % Zero-pad
img fft = fft2(Im p);

corr freq = img fft .* target fft;
corrQutput f ifft2(corr freq);
corrQutput f corrQutput f(rt:ri, ct:ci);

% Calculate image energies and block run tiles that are size of
% target template.

IUT energy = (Im _gp)."2;

IUT = conv2(IUT energy, C ones, 'valid');

IUT = sqrt(IUT);

% Calculate normalized cross correlation.
norm _Corr f = (corrQutput f) ./ (IUT * target _energy);
xyLocation = step(hFindMax, norm Corr f);

% Calculate linear indices.
linear index = sub2ind([ri-rt, ci-ct]+1, xylLocation(:,2),...
xyLocation(:,1));

norm Corr_f linear = norm_Corr f(:);

norm Corr_value = norm Corr_f linear(linear index);

detect = (norm _Corr_value > threshold);

target roi = zeros(length(detect), 4);

ul corner = (gain.*(xyLocation(detect, :)-1))+1;

target roi(detect, :) = [ul _corner, fliplr(target size(detect, :))1;

% Draw bounding box.

Imf = insertShape(Im, 'Rectangle', target roi, 'Color', ‘'green');
% Plot normalized cross correlation.
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videopatternplots('update',hPlot,norm Corr value);
step(hROIPattern, Imf);
end

snapnow
release(hVideoSrc);

% Function to compute pyramid image at a particular level.
function outI = multilevelPyramid(inI, level)

I = inI;

outl = I;

for i=1l:level
outl = impyramid(I, 'reduce');
I = outI;

end

end
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Summary

This example shows use of Computer Vision Toolbox™ to find a user defined pattern in a
video and track it. The algorithm is based on normalized frequency domain cross
correlation between the target and the image under test. The video player window
displays the input video with the identified target locations. Also a figure displays the
normalized correlation between the target and the image which is used as a metric to
match the target. As can be seen whenever the correlation value exceeds the threshold

(indicated by the blue line), the target is identified in the input video and the location is
marked by the green bounding box.

Appendix

The following helper functions are used in this example.
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+ videopattern gettemplate.m
* videopatternplots.m
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Pattern Matching

8-20

This example shows how to use the 2-D normalized cross-correlation for pattern matching
and target tracking.

Double-click the Edit Parameters block to select the number of similar targets to detect.
You can also change the pyramiding factor. By increasing it, you can match the target
template to each video frame more quickly. Changing the pyramiding factor might require
you to change the Threshold value.

Additionally, you can double-click the Correlation Method switch to specify the domain in
which to perform the cross-correlation. The relative size of the target to the input video
frame and the pyramiding factor determine which domain computation is faster.

Example Model

The following figure shows the Pattern Matching model:
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Pattern Matching Results

The Match metric window shows the variation of the target match metrics. The model
determines that the target template is present in a video frame when the match metric

exceeds a threshold (cyan lin

e).
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The Cross-correlation window shows the result of cross-correlating the target template
with a video frame. Large values in this window correspond to the locations of the targets
in the input image.
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The Overlay window shows the locations of the targets by highlighting them with
rectangular regions of interest (ROIs). These ROIs are present only when the targets are

detected in the video frame.
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Geometric Transformations

* “Rotate an Image” on page 9-2
* “Resize an Image” on page 9-7
* “Crop an Image” on page 9-11
“Nearest Neighbor, Bilinear, and Bicubic Interpolation Methods” on page 9-15



9 Geometric Transformations

Rotate an Image

9-2

You can use the Rotate block to rotate your image or video stream by a specified angle. In
this example, you learn how to use the Rotate block to continuously rotate an image.

Note Running this example requires a DSP System Toolbox license.

ex _vision rotate image

1 Define an RGB image in the MATLAB workspace. At the MATLAB command prompt,
type

I = checker board;

I is a 100-by-100-by-3 array of double-precision values. Each plane of the array
represents the red, green, or blue color values of the image.

2 To view the image this matrix represents, at the MATLAB command prompt, type

imshow(I)

B Figure 1 =3 [E=R(

File Edi Viev Inse Too Deskh Windc Hel ~

H_blj IH\:EIL? [::E‘ .+:\- ._:\-{r?ﬁf' ®

3 Create a new Simulink model, and add to it the blocks shown in the following table.


matlab:ex_vision_rotate_image

Rotate an Image

Block Library Quantity
Image From Workspace |Computer Vision Toolbox > Sources 1
Rotate Computer Vision Toolbox > Geometric |1
Transformations
Video Viewer Computer Vision Toolbox > Sinks 2
Gain Simulink > Math Operations 1
Display DSP System Toolbox > Sinks 1
Counter DSP System Toolbox > Signal 1
Management > Switches and
Counters

Use the Image From Workspace block to import the RGB image from the MATLAB
workspace. On the Main pane, set the Value parameter to I. Each plane of the array
represents the red, green, or blue color values of the image.

Use the Video Viewer block to display the original image. Accept the default
parameters.

The Video Viewer block automatically displays the original image in the Video Viewer
window when you run the model. Because the image is represented by double-
precision floating-point values, a value of 0 corresponds to black and a value of 1
corresponds to white.

Use the Rotate block to rotate the image. Set the block parameters as follows:

* Rotation angle source = Input port
* Sine value computation method = Trigonometric function

The Angle port appears on the block. You use this port to input a steadily increasing
angle. Setting the Output size parameter to Expanded to fit rotated input
image ensures that the block does not crop the output.

Use the Video Viewer1 block to display the rotating image. Accept the default
parameters.

Use the Counter block to create a steadily increasing angle. Set the block parameters
as follows:

* Count event = Free running
* Counter size = 16 bits
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9-4

* Output = Count
* Clear the Reset input check box.
* Sample time = 1/30

The Counter block counts upward until it reaches the maximum value that can be
represented by 16 bits. Then, it starts again at zero. You can view its output value on
the Display block while the simulation is running. The Counter block's Count data

type parameter enables you to specify it's output data type.

9 Use the Gain block to convert the output of the Counter block from degrees to

radians. Set the Gain parameter to pi/180.
10 Connect the blocks as shown in the following figure.

J""i ex_vision_rotate_image *
File Edit View Display Diagram Simulation Analysis Code Tools Help

-8 & G- 4®» b ® - w

| ex_vision_rotate_image |

= @ex_\.rision_ru:utate_image hd
Video
B
IE' | Image Vi
=
Video Viewer
Image | Image ;
Rotate P Image :.IdEG
»|sngle iewer
Image From Works pace Rotate
Video Viewer 1
G SRS S EN —
GEain Display
Counter
»
Ready 100% FicedStepDiscrete




Rotate an Image

11 Set the configuration parameters. Open the Configuration dialog box by selecting
Model Configuration Parameters from the Simulation menu. Set the parameters
as follows:

* Solver pane, Stop time = inf

* Solver pane, Type = Fixed-step

* Solver pane, Solver = Discrete (no continuous states)
12 Run the model.

The original image appears in the Video Viewer window.

o "

u Video Viewer EI@

File Tools View Simulation Help N
= O 5 | = S 40 £ 0% -
®Pr® @

Ready |RGB:100x100  [T=10.000

The rotating image appears in the Video Viewerl window.
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9-6

o 1

B video Viewerl o =[S

File Tools View Simulation Help o
= 5 ] £, S5 & | E3l|100% v
® @ @

Ready |RGB:142x142 |[T=10.000

In this example, you used the Rotate block to continuously rotate your image. For more
information about this block, see the Rotate block reference page in the Computer Vision
Toolbox Reference. For more information about other geometric transformation blocks,
see the Resize and Shear block reference pages.

Note If you are on a Windows operating system, you can replace the Video Viewer block
with the To Video Display block, which supports code generation.




Resize an Image

Resize an Image

You can use the Resize block to change the size of your image or video stream. In this
example, you learn how to use the Resize block to reduce the size of an image:

ex_vision resize image

1 Create a new Simulink model, and add to it the blocks shown in the following table.

Block Library Quantity
Image From File Computer Vision Toolbox > Sources |1
Resize Computer Vision Toolbox > 1

Geometric Transformations

Video Viewer Computer Vision Toolbox > Sinks 2

2 Use the Image From File block to import the intensity image. Set the File name
parameter to moon. tif. The tif file is a 537-by-358 matrix of 8-bit unsigned integer
values.

3  Use the Video Viewer block to display the original image. Accept the default
parameters. This block automatically displays the original image in the Video Viewer
window when you run the model.

4 Use the Resize block to shrink the image. Set the Resize factor in % parameter to
50. This shrinks the image to half its original size.

5 Use the Video Viewerl block to display the modified image. Accept the default
parameters.

6 Connect the blocks as shown in the following figure.


matlab:ex_vision_resize_image

9 Geometric Transformations
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7  Set the configuration parameters. Open the Configuration dialog box by selecting
Model Configuration Parameters from the Simulation menu. Set the parameters
as follows:

* Solver pane, Stop time = 0

* Solver pane, Type = Fixed-step

* Solver pane, Solver = Discrete (no continuous states)
8 Run the model.

The original image appears in the Video Viewer window.



Resize an Image

pr
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The reduced image appears in the Video Viewerl window.
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o 1

B video Viewerl ][ -E S
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In this example, you used the Resize block to shrink an image. For more information
about this block, see the Resize block reference page. For more information about other
geometric transformation blocks, see the Rotate, Warp, Estimate Geometric
Transformation, and Translate block reference pages.
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Crop an Image

You can use the Selector block to crop your image or video stream. In this example, you
learn how to use the Selector block to trim an image down to a particular region of

interest:

ex_vision crop image

1 Create a new Simulink model, and add to it the blocks shown in the following table.

Block Library Quantity
Image From File Computer Vision Toolbox > Sources 1
Video Viewer Computer Vision Toolbox > Sinks 2
Selector Simulink > Signal Routing 1

2 Use the Image From File block to import the intensity image. Set the File name
parameter to coins.png. The image is a 246-by-300 matrix of 8-bit unsigned integer
values.

3  Use the Video Viewer block to display the original image. Accept the default
parameters. This block automatically displays the original image in the Video Viewer
window when you run the model.

4 Use the Selector block to crop the image. Set the block parameters as follows:

*  Number of input dimensions = 2

c 1

Index Option = Starting index (dialog)

Index = 140

Output Size = 70

Index Option = Starting index (dialog)

Index = 200

Output Size = 70

The Selector block starts at row 140 and column 200 of the image and outputs the
next 70 rows and columns of the image.
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matlab:ex_vision_crop_image

9 Geometric Transformations

5 Use the Video Viewerl block to display the cropped image. This block automatically
displays the modified image in the Video Viewer window when you run the model.

6 Connect the blocks as shown in the following figure.
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File
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Set the configuration parameters. Open the Configuration dialog box by selecting

Model Configuration Parameters from the Simulation menu. Set the parameters

as follows:

* Solver pane, Stop time =0

* Solver pane, Type = F

ixed-step




Crop an Image

* Solver pane, Solver = Discrete (no continuous states)
8 Run the model.

The original image appears in the Video Viewer window.

u Video Viewerl E'@

File Tools View Simulation Help
= O &, =, ™| B3 100% v
®Pr® =

Ready |:246x300 [T=0.000

The cropped image appears in the Video Viewerl window. The following image is
shown at its true size.
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In this example, you used the Selector block to crop an image. For more information
about the Selector block, see the Simulink documentation. For information about the
imcrop function, see the Image Processing Toolbox documentation.
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Nearest Neighbor, Bilinear, and Bicubic Interpolation Methods

Nearest Neighbor, Bilinear, and Bicubic Interpolation
Methods

In this section...

“Nearest Neighbor Interpolation” on page 9-15
“Bilinear Interpolation” on page 9-16

“Bicubic Interpolation” on page 9-17

Nearest Neighbor Interpolation

For nearest neighbor interpolation, the block uses the value of nearby translated pixel
values for the output pixel values.

For example, suppose this matrix,

123
456
789

represents your input image. You want to translate this image 1.7 pixels in the positive
horizontal direction using nearest neighbor interpolation. The Translate block's nearest
neighbor interpolation algorithm is illustrated by the following steps:

1 Zero pad the input matrix and translate it by 1.7 pixels to the right.

Translated zero-padded matrix

0 0
0
0 0

o o o
® o N
FCT NG
© o w
o (931 Do
o o o
—— o0 o w
o o o
)

1
4
7
. R
T |‘ 1.7 pixels -

Original zero-padded matrix

2 Create the output matrix by replacing each input pixel value with the translated value
nearest to it. The result is the following matrix:
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00123
00456
00789

Note You wanted to translate the image by 1.7 pixels, but this method translated the
image by 2 pixels. Nearest neighbor interpolation is computationally efficient but not as
accurate as bilinear or bicubic interpolation.

Bilinear Interpolation

For bilinear interpolation, the block uses the weighted average of two translated pixel
values for each output pixel value.

For example, suppose this matrix,

123
456
789

represents your input image. You want to translate this image 0.5 pixel in the positive
horizontal direction using bilinear interpolation. The Translate block's bilinear
interpolation algorithm is illustrated by the following steps:

1  Zero pad the input matrix and translate it by 0.5 pixel to the right.

Translated zero-padded matrix

0 1 1 2 2 3 3 0 0
0 4 4 5 5 6 6 0 0
0 7 7 8 8 9 9 0 0

[ —>|

|

Original zero-padded matrix 0.5 pixel

2 Create the output matrix by replacing each input pixel value with the weighted
average of the translated values on either side. The result is the following matrix
where the output matrix has one more column than the input matrix:
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05152515
2 4555 3
3.5758545

Bicubic Interpolation

For bicubic interpolation, the block uses the weighted average of four translated pixel
values for each output pixel value.

For example, suppose this matrix,

123
456
789

represents your input image. You want to translate this image 0.5 pixel in the positive
horizontal direction using bicubic interpolation. The Translate block's bicubic
interpolation algorithm is illustrated by the following steps:

1  Zero pad the input matrix and translate it by 0.5 pixel to the right.

Translated zero-padded matrix

0 0 0 1 1 2 2 3 3 0 0 0 0
0 0 0 4 4 5 5 6 6 0 0 0 0
0 0 0 7 7 8 8 9 9 0 0 0 0

Original zero-padded matrix ‘

0.5 pixel

2 Create the output matrix by replacing each input pixel value with the weighted
average of the two translated values on either side. The result is the following matrix
where the output matrix has one more column than the input matrix:

0.375 1.5 3 1.625
1.875 4.875 6.375 3.125
3.375 8.25 9.75 4.625
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Filters, Transforms, and
Enhancements

* “Adjust the Contrast of Intensity Images” on page 10-2
* “Adjust the Contrast of Color Images” on page 10-6

* “Remove Salt and Pepper Noise from Images” on page 10-11
“Sharpen an Image” on page 10-16



10 Filters, Transforms, and Enhancements

Adjust the Contrast of Intensity Images

10-2

This example shows you how to modify the contrast in two intensity images using the
Contrast Adjustment and Histogram Equalization blocks.

ex_vision adjust contrast intensity

1 Create a new Simulink model, and add to it the blocks shown in the following table.

Block Library Quantity

Image From File Computer Vision Toolbox > Sources 2

Contrast Adjustment |Computer Vision Toolbox > Analysis & 1
Enhancement

Histogram Computer Vision Toolbox > Analysis & 1

Equalization Enhancement

Video Viewer Computer Vision Toolbox > Sinks 4

Place the blocks listed in the table above into your new model.

Use the Image From File block to import the first image into the Simulink model. Set
the File name parameter to pout.tif.

4  Use the Image From Filel block to import the second image into the Simulink model.
Set the File name parameter to tire.tif.

5 Use the Contrast Adjustment block to modify the contrast in pout.tif. Set the
Adjust pixel values from parameter to Range determined by saturating

outlier pixels. This block adjusts the contrast of the image by linearly scaling the

pixel values between user-specified upper and lower limits.

6 Use the Histogram Equalization block to modify the contrast in tire.tif. Accept
the default parameters. This block enhances the contrast of images by transforming
the values in an intensity image so that the histogram of the output image
approximately matches a specified histogram.

7  Use the Video Viewer blocks to view the original and modified images. Accept the
default parameters.

8 Connect the blocks as shown in the following figure.


matlab:ex_vision_adjust_contrast_intensity

Adjust the Contrast of Intensity Images

D'i ex_vision_adjust_contrast_intensity
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Video Viewer3
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9 Set the configuration parameters. Open the Configuration dialog box by selecting
Model Configuration Parameters from the Simulation menu. Set the parameters
as follows:

* Solver pane, Stop time =0

* Solver pane, Type = Fixed-step

* Solver pane, Solver = Discrete (no continuous states)
10 Run the model.

The results appear in the Video Viewer windows.

B Video Viewer L[ ]

File Tools View Simulation Help o
= R O %R L o -
OIX ICE

Ready [-291x240 [T=0.000
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o

u Video Viewer2 E@

File Tools View Simulation Help o
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Ready [:205x232 [T=0.000

In this example, you used the Contrast Adjustment block to linearly scale the pixel values
in pout.tif between new upper and lower limits. You used the Histogram Equalization
block to transform the values in tire.tif so that the histogram of the output image
approximately matches a uniform histogram. For more information, see the Contrast
Adjustment and Histogram Equalization reference pages.
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Adjust the Contrast of Color Images

This example shows you how to modify the contrast in color images using the Histogram
Equalization block.

ex _vision adjust contrast color.mdl

1 Use the following code to read in an indexed RGB image, shadow. tif, and convert it
to an RGB image. The model provided above already includes this code in file >
Model Properties > Model Properties > InitFcn, and executes it prior to
simulation.

[X map] = imread('shadow.tif"');
shadow = ind2rgb(X,map);

2 Create a new Simulink model, and add to it the blocks shown in the following table.

Block Library Quantity
Image From Computer Vision Toolbox > Sources 1
Workspace

Color Space Computer Vision Toolbox > Conversions 2
Conversion

Histogram Computer Vision Toolbox > Analysis & 1
Equalization Enhancement

Video Viewer Computer Vision Toolbox > Sinks 2
Constant Simulink > Sources 1
Divide Simulink > Math Operations 1
Product Simulink > Math Operations 1

Place the blocks listed in the table above into your new model.
4 Use the Image From Workspace block to import the RGB image from the MATLAB
workspace into the Simulink model. Set the block parameters as follows:
* Value = shadow
* Image signal = Separate color signals

5 Use the Color Space Conversion block to separate the luma information from the
color information. Set the block parameters as follows:
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matlab:ex_vision_adjust_contrast_color.mdl

Adjust the Contrast of Color Images

10

11

12

* Conversion = sR'G'B' to L*a*b*
* Image signal = Separate color signals

Because the range of the L* values is between 0 and 100, you must normalize them
to be between zero and one before you pass them to the Histogram Equalization
block, which expects floating point input in this range.

Use the Constant block to define a normalization factor. Set the Constant value
parameter to 100.

Use the Divide block to normalize the L* values to be between 0 and 1. Accept the
default parameters.

Use the Histogram Equalization block to modify the contrast in the image. This block
enhances the contrast of images by transforming the luma values in the color image
so that the histogram of the output image approximately matches a specified
histogram. Accept the default parameters.

Use the Product block to scale the values back to be between the 0 to 100 range.
Accept the default parameters.

Use the Color Space Conversionl block to convert the values back to the sR'G'B'
color space. Set the block parameters as follows:

* Conversion = L*a*b* to sR'G'B'
* Image signal = Separate color signals

Use the Video Viewer blocks to view the original and modified images. For each
block, set the Image signal parameter to Separate color signals from the file
menu.

Connect the blocks as shown in the following figure.
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13

Set the configuration parameters. Open the Configuration dialog box by selecting

Model Configuration Parameters from the Simulation menu. Set the parameters

as follows:

* Solver pane, Stop time =0

* Solver pane, Type = Fixed-step

* Solver pane, Solver = Discrete (no continuous states)

14 Run the model.

As shown in the following figure, the model displays the original image in the Video

Viewerl window.
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As the next figure shows, the model displays the enhanced contrast image in the
Video Viewer window.
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In this example, you used the Histogram Equalization block to transform the values in a
color image so that the histogram of the output image approximately matches a uniform
histogram. For more information, see the Histogram Equalization reference page.
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Remove Salt and Pepper Noise from Images

Median filtering is a common image enhancement technique for removing salt and pepper
noise. Because this filtering is less sensitive than linear techniques to extreme changes in
pixel values, it can remove salt and pepper noise without significantly reducing the
sharpness of an image. In this topic, you use the Median Filter block to remove salt and
pepper noise from an intensity image:

ex_vision remove noise

1 Define an intensity image in the MATLAB workspace and add noise to it by typing the
following at the MATLAB command prompt:

I= double(imread('circles.png'));
I= imnoise(I, 'salt & pepper',0.02);

Iis a 256-by-256 matrix of 8-bit unsigned integer values.

The model provided with this example already includes this code in file>Model
Properties>Model Properties>InitFcn, and executes it prior to simulation.

2 To view the image this matrix represents, at the MATLAB command prompt, type

imshow(I)
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The intensity image contains noise that you want your model to eliminate.
3 Create a Simulink model, and add the blocks shown in the following table.

Block Library Quantity
Image From Computer Vision Toolbox > Sources 1
Workspace

Median Filter Computer Vision Toolbox > Filtering 1

Video Viewer Computer Vision Toolbox > Sinks 2

4 Use the Image From Workspace block to import the noisy image into your model. Set
the Value parameter to I.

5 Use the Median Filter block to eliminate the black and white speckles in the image.
Use the default parameters.

The Median Filter block replaces the central value of the 3-by-3 neighborhood with
the median value of the neighborhood. This process removes the noise in the image.
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6 Use the Video Viewer blocks to display the original noisy image, and the modified
image. Images are represented by 8-bit unsigned integers. Therefore, a value of 0
corresponds to black and a value of 255 corresponds to white. Accept the default
parameters.

7  Connect the blocks as shown in the following figure.

{'i EX_VISION_remove_noise ™ EI@
File Edit View Display Diagram Simulation Analysis Code Tools Help
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@&
3
ul Median o Video
— ! Imags > Filter P IME8E s
Image From Works pace Median Filter Vides Viewsr 1
Video
P Image Viewsr
Video View er
»
Ready 100% FixedStepDiscrete
8 Set the configuration parameters. Open the Configuration dialog box by selecting

Model Configuration Parameters from the Simulation menu. Set the parameters
as follows:

* Solver pane, Stop time =0
* Solver pane, Type = Fixed-step
* Solver pane, Solver = Discrete (no continuous states)
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Run the model.

The original and filtered images are displayed.
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You have used the Median Filter block to remove noise from your image. For more
information about this block, see the Median Filter block reference page in the Computer
Vision Toolbox Reference.
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To sharpen a color image, you need to make the luma intensity transitions more acute,
while preserving the color information of the image. To do this, you convert an R'G'B'
image into the Y'CbCr color space and apply a highpass filter to the luma portion of the
image only. Then, you transform the image back to the R'G'B' color space to view the
results. To blur an image, you apply a lowpass filter to the luma portion of the image. This
example shows how to use the 2-D FIR Filter block to sharpen an image. The prime
notation indicates that the signals are gamma corrected.

ex_vision sharpen_image

1 Define an R'G'B' image in the MATLAB workspace. To read in an R'G'B' image from a
PNG file and cast it to the double-precision data type, at the MATLAB command
prompt, type

I= im2double(imread('peppers.png'));

I is a 384-by-512-by-3 array of double-precision floating-point values. Each plane of
this array represents the red, green, or blue color values of the image.

The model provided with this example already includes this code in file>Model
Properties>Model Properties>InitFcn, and executes it prior to simulation.

2 To view the image this array represents, type this command at the MATLAB command
prompt:

imshow(I)


matlab:ex_vision_sharpen_image

Sharpen an Image
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Now that you have defined your image, you can create your model.
3 Create a new Simulink model, and add to it the blocks shown in the following table.

Block Library Quantity
Image From Computer Vision Toolbox > Sources 1
Workspace

Color Space Computer Vision Toolbox > Conversions 2
Conversion
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Block Library Quantity
2-D FIR Filter Computer Vision Toolbox > Filtering 1
Video Viewer Computer Vision Toolbox > Sinks 1

Use the Image From Workspace block to import the R'G'B' image from the MATLAB
workspace. Set the parameters as follows:

* Main pane, Value = I

* Main pane, Image signal = Separate color signals

The block outputs the R', G', and B' planes of the I array at the output ports.

The first Color Space Conversion block converts color information from the R'G'B'
color space to the Y'ChCr color space. Set the Image signal parameter to Separate
color signals

Use the 2-D FIR Filter block to filter the luma portion of the image. Set the block
parameters as follows:

* Coefficients = fspecial('unsharp')

* Output size = Same as input port I

* Padding options = Symmetric

* Filtering based on = Correlation

The fspecial('unsharp') command creates two-dimensional highpass filter
coefficients suitable for correlation. This highpass filter sharpens the image by
removing the low frequency noise in it.

The second Color Space Conversion block converts the color information from the
Y'CbhCr color space to the R'G'B' color space. Set the block parameters as follows:
* Conversion = Y'CbCr to R'G'B'

* Image signal = Separate color signals

Use the Video Viewer block to automatically display the new, sharper image in the
Video Viewer window when you run the model. Set the Image signal parameter to
Separate color signals, by selecting File > Image Signal.

Connect the blocks as shown in the following figure.
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10 Set the configuration parameters. Open the Configuration dialog box by selecting
Model Configuration Parameters from the Simulation menu. Set the parameters

as follows:

* Solver pane, Stop time = 0
* Solver pane, Type = Fixed-step
* Solver pane, Solver = Discrete (no continuous states)

11 Run the model.

A sharper version of the original image appears in the Video Viewer window.
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To blur the image, double-click the 2-D FIR Filter block. Set Coefficients parameter
to fspecial('gaussian',[15 15],7) and then click OK. The
fspecial('gaussian',[15 15],7) command creates two-dimensional Gaussian
lowpass filter coefficients. This lowpass filter blurs the image by removing the high
frequency noise in it.

In this example, you used the Color Space Conversion and 2-D FIR Filter blocks to

sharpen an image. For more information, see the Color Space Conversion and 2-D FIR
Filter, and fspecial reference pages.
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Correct Nonuniform lllumination

11-2

Global threshold techniques, which are often the first step in object measurement, cannot
be applied to unevenly illuminated images. To correct this problem, you can change the
lighting conditions and take another picture, or you can use morphological operators to
even out the lighting in the image. Once you have corrected for nonuniform illumination,
you can pick a global threshold that delineates every object from the background. In this
topic, you use the Opening block to correct for uneven lighting in an intensity image:

You can open the example model by typing
ex_vision correct uniform
on the MATLAB command line.

1 Create a new Simulink model, and add to it the blocks shown in the following table.

Block Library Quantity
Image From File Computer Vision Toolbox > Sources 1
Opening Computer Vision Toolbox > 1
Morphological Operations
Video Viewer Computer Vision Toolbox > Sinks 4
Constant Simulink > Sources 1
Sum Simulink > Math Operations 2
Data Type Conversion Simulink > Signal Attributes 1

2 Use the Image From File block to import the intensity image. Set the File name
parameter to rice.png. This image is a 256-by-256 matrix of 8-bit unsigned integer
values.

3  Use the Video Viewer block to view the original image. Accept the default
parameters.

4 Use the Opening block to estimate the background of the image. Set the
Neighborhood or structuring element parameter to strel('disk"',15).

The strel object creates a circular STREL object with a radius of 15 pixels. When
working with the Opening block, pick a STREL object that fits within the objects you
want to keep. It often takes experimentation to find the neighborhood or STREL
object that best suits your application.


matlab:ex_vision_correct_uniform
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Use the Video Viewer1 block to view the background estimated by the Opening block.
Accept the default parameters.

Use the first Sum block to subtract the estimated background from the original
image. Set the block parameters as follows:

* Icon shape = rectangular

* List of signs = -+

Use the Video Viewer?2 block to view the result of subtracting the background from
the original image. Accept the default parameters.

Use the Constant block to define an offset value. Set the Constant value parameter
to 80.

Use the Data Type Conversion block to convert the offset value to an 8-bit unsigned
integer. Set the Output data type mode parameter to uint8.

Use the second Sum block to lighten the image so that it has the same brightness as
the original image. Set the block parameters as follows:

* Icon shape = rectangular

* List of signs = ++

Use the Video Viewer3 block to view the corrected image. Accept the default
parameters.

Connect the blocks as shown in the following figure.
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13 Set the configuration parameters. Open the Configuration dialog box by selecting
Model Configuration Parameters from the Simulation menu. Set the parameters
as follows:

* Solver pane, Stop time =0

* Solver pane, Type = Fixed-step

* Solver pane, Solver = discrete (no continuous states)
14 Run the model.

The original image appears in the Video Viewer window.
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The estimated background appears in the Video Viewerl window.
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The image without the estimated background appears in the Video Viewer2 window.
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The preceding image is too dark. The Constant block provides an offset value that
you used to brighten the image.

The corrected image, which has even lighting, appears in the Video Viewer3 window.
The following image is shown at its true size.
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In this section, you have used the Opening block to remove irregular illumination from an
image. For more information about this block, see the Opening reference page. For
related information, see the Top-hat block reference page. For more information about
STREL objects, see the strel object in the Image Processing Toolbox documentation.
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Count Objects in an Image

In this example, you import an intensity image of a wheel from the MATLAB workspace
and convert it to binary. Then, using the Opening and Label blocks, you count the number
of spokes in the wheel. You can use similar techniques to count objects in other intensity
images. However, you might need to use additional morphological operators and different
structuring elements.

Note Running this example requires a DSP System Toolbox license.

You can open the example model by typing
ex _vision count objects
on the MATLAB command line.

1 Create a new Simulink model, and add to it the blocks shown in the following table.

Block Library Quantity

Image From File Computer Vision Toolbox > Sources 1

Opening Computer Vision Toolbox> 1
Morphological Operations

Label Computer Vision Toolbox > 1
Morphological Operations

Video Viewer Computer Vision Toolbox > Sinks 2

Constant Simulink > Sources 1

Relational Operator Simulink > Logic and Bit Operations 1

Display Simulink > Sinks 1

2 Use the Image From File block to import your image. Set the File name parameter
to testpatl.png. This is a 256-by-256 matrix image of 8-bit unsigned integers.

3  Use the Constant block to define a threshold value for the Relational Operator block.
Set the Constant value parameter to 200.

4  Use the Video Viewer block to view the original image. Accept the default
parameters.

5 Use the Relational Operator block to perform a thresholding operation that converts
your intensity image to a binary image. Set the Relational Operator parameter to <.
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If the input to the Relational Operator block is less than 200, its output is 1;
otherwise, its output is 0. You must threshold your intensity image because the Label
block expects binary input. Also, the objects it counts must be white.

Use the Opening block to separate the spokes from the rim and from each other at
the center of the wheel. Use the default parameters.

The strel object creates a circular STREL object with a radius of 5 pixels. When
working with the Opening block, pick a STREL object that fits within the objects you
want to keep. It often takes experimentation to find the neighborhood or STREL
object that best suits your application.

Use the Video Viewer1 block to view the opened image. Accept the default
parameters.

Use the Label block to count the number of spokes in the input image. Set the
Output parameter to Number of labels.

The Display block displays the number of spokes in the input image. Use the default
parameters.

10 Connect the block as shown in the following figure.
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11 Set the configuration parameters. Open the Configuration dialog box by selecting
Model Configuration Parameters from the Simulation menu. Set the parameters

12

as follows:

* Solver pane, Stop time =0

* Solver pane, Type = Fixed-step

* Solver pane, Solver = discrete (no continuous states)
Run the model.

The original image appears in the Video Viewerl window. To view the image at its

true size, right-click the window and select Set Display To True Size.

11-11



11 statistics and Morphological Operations

-

‘l.l’ideu‘u’iewer E@

File Tools View Simulation Help o
= RO %S | oo -
©Pr®| @

+* 4

AL L
ar ar

Ready [:256x256 [T=0.000

The opened image appears in the Video Viewer window. The following image is shown
at its true size.
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As you can see in the preceding figure, the spokes are now separate white objects. In
the model, the Display block correctly indicates that there are 24 distinct spokes.
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You have used the Opening and Label blocks to count the number of spokes in an image.
For more information about these blocks, see the Opening and Label block reference
pages in the Computer Vision Toolbox Reference. If you want to send the number of
spokes to the MATLAB workspace, use the To Workspace block in Simulink. For more
information about STREL objects, see strel in the Image Processing Toolbox

documentation.
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Fixed-Point Signal Processing

12-2

In this section...

“Fixed-Point Features” on page 12-2
“Benefits of Fixed-Point Hardware” on page 12-2

“Benefits of Fixed-Point Design with System Toolboxes Software” on page 12-3

Note To take full advantage of fixed-point support in System Toolbox software, you must
install Fixed-Point Designer™ software.

Fixed-Point Features

Many of the blocks in this product have fixed-point support, so you can design signal
processing systems that use fixed-point arithmetic. Fixed-point support in DSP System
Toolbox software includes

* Signed two's complement and unsigned fixed-point data types
*  Word lengths from 2 to 128 bits in simulation

*  Word lengths from 2 to the size of a Long on the Simulink Coder C code-generation
target

* Overflow handling and rounding methods

* C code generation for deployment on a fixed-point embedded processor, with Simulink
Coder code generation software. The generated code uses all allowed data types
supported by the embedded target, and automatically includes all necessary shift and
scaling operations

Benefits of Fixed-Point Hardware

There are both benefits and trade-offs to using fixed-point hardware rather than floating-
point hardware for signal processing development. Many signal processing applications
require low-power and cost-effective circuitry, which makes fixed-point hardware a
natural choice. Fixed-point hardware tends to be simpler and smaller. As a result, these
units require less power and cost less to produce than floating-point circuitry.

Floating-point hardware is usually larger because it demands functionality and ease of
development. Floating-point hardware can accurately represent real-world numbers, and
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its large dynamic range reduces the risk of overflow, quantization errors, and the need for
scaling. In contrast, the smaller dynamic range of fixed-point hardware that allows for
low-power, inexpensive units brings the possibility of these problems. Therefore, fixed-
point development must minimize the negative effects of these factors, while exploiting
the benefits of fixed-point hardware; cost- and size-effective units, less power and memory
usage, and fast real-time processing.

Benefits of Fixed-Point Design with System Toolboxes
Software

Simulating your fixed-point development choices before implementing them in hardware
saves time and money. The built-in fixed-point operations provided by the System
Toolboxes software save time in simulation and allow you to generate code automatically.

This software allows you to easily run multiple simulations with different word length,
scaling, overflow handling, and rounding method choices to see the consequences of
various fixed-point designs before committing to hardware. The traditional risks of fixed-
point development, such as quantization errors and overflow, can be simulated and
mitigated in software before going to hardware.

Fixed-point C code generation with System Toolbox software and Simulink Coder code
generation software produces code ready for execution on a fixed-point processor. All the
choices you make in simulation in terms of scaling, overflow handling, and rounding
methods are automatically optimized in the generated code, without necessitating time-
consuming and costly hand-optimized code.
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Fixed-Point Concepts and Terminology

12-4

In this section...

“Fixed-Point Data Types” on page 12-4
“Scaling” on page 12-5
“Precision and Range” on page 12-6

Note The Glossary (DSP System Toolbox) defines much of the vocabulary used in these
sections. For more information on these subjects, see “Fixed-Point Designer”.

Fixed-Point Data Types

In digital hardware, numbers are stored in binary words. A binary word is a fixed-length
sequence of bits (1's and 0's). How hardware components or software functions interpret
this sequence of 1's and 0's is defined by the data type.

Binary numbers are represented as either fixed-point or floating-point data types. In this
section, we discuss many terms and concepts relating to fixed-point numbers, data types,
and mathematics.

A fixed-point data type is characterized by the word length in bits, the position of the
binary point, and whether it is signed or unsigned. The position of the binary point is the
means by which fixed-point values are scaled and interpreted.

For example, a binary representation of a generalized fixed-point number (either signed
or unsigned) is shown below:

byyi-1 byyi-2 bs | by | by | Bo | By | By

MSB T LSB
binary point

where

* b, is the i*h binary digit.
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* wl is the word length in bits.
* b, is the location of the most significant, or highest, bit (MSB).
* by is the location of the least significant, or lowest, bit (LSB).

* The binary point is shown four places to the left of the LSB. In this example, therefore,
the number is said to have four fractional bits, or a fraction length of four.

Fixed-point data types can be either signed or unsigned. Signed binary fixed-point
numbers are typically represented in one of three ways:

* Sign/magnitude
* One's complement
* Two's complement

Two's complement is the most common representation of signed fixed-point numbers and
is used by System Toolbox software. See “Two's Complement” on page 12-10 for more
information.

Scaling
Fixed-point numbers can be encoded according to the scheme

real-worldvalue = (slope X integer) + bias

where the slope can be expressed as

slope = slope ad justment x 28XPonent

The integer is sometimes called the stored integer. This is the raw binary number, in
which the binary point assumed to be at the far right of the word. In System Toolboxes,
the negative of the exponent is often referred to as the fraction length.

The slope and bias together represent the scaling of the fixed-point number. In a number
with zero bias, only the slope affects the scaling. A fixed-point number that is only scaled
by binary point position is equivalent to a number in the Fixed-Point Designer [Slope Bias]
representation that has a bias equal to zero and a slope adjustment equal to one. This is
referred to as binary point-only scaling or power-of-two scaling:

o = pexponent

real-world valu X integer

or
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fractionlength

real-world value = 2~ X integer

In System Toolbox software, you can define a fixed-point data type and scaling for the
output or the parameters of many blocks by specifying the word length and fraction
length of the quantity. The word length and fraction length define the whole of the data
type and scaling information for binary-point only signals.

All System Toolbox blocks that support fixed-point data types support signals with binary-
point only scaling. Many fixed-point blocks that do not perform arithmetic operations but
merely rearrange data, such as Delay and Matrix Transpose, also support signals with
[Slope Bias] scaling.

Precision and Range

You must pay attention to the precision and range of the fixed-point data types and
scalings you choose for the blocks in your simulations, in order to know whether rounding
methods will be invoked or if overflows will occur.

Range

The range is the span of numbers that a fixed-point data type and scaling can represent.
The range of representable numbers for a two's complement fixed-point number of word
length wi, scaling S, and bias B is illustrated below:

§-(-2“")+B B s-(2°7'-1)+B

| f i
negative numbers positive numbers

For both signed and unsigned fixed-point numbers of any data type, the number of
different bit patterns is 2.

For example, in two's complement, negative numbers must be represented as well as
zero, so the maximum value is 2%-!. Because there is only one representation for zero,
there are an unequal number of positive and negative numbers. This means there is a
representation for -2%-! but not for 21
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For slope = 1 and bias = 0:

_21{.‘1—1 []- zwi—l _ 1

negative numbers positive numbers

Overflow Handling

Because a fixed-point data type represents numbers within a finite range, overflows can
occur if the result of an operation is larger or smaller than the numbers in that range.

System Toolbox software does not allow you to add guard bits to a data type on-the-fly in
order to avoid overflows. Any guard bits must be allocated upon model initialization.
However, the software does allow you to either saturate or wrap overflows. Saturation
represents positive overflows as the largest positive number in the range being used, and
negative overflows as the largest negative number in the range being used. Wrapping
uses modulo arithmetic to cast an overflow back into the representable range of the data
type. See “Modulo Arithmetic” on page 12-9 for more information.

Precision

The precision of a fixed-point number is the difference between successive values
representable by its data type and scaling, which is equal to the value of its least
significant bit. The value of the least significant bit, and therefore the precision of the
number, is determined by the number of fractional bits. A fixed-point value can be
represented to within half of the precision of its data type and scaling.

For example, a fixed-point representation with four bits to the right of the binary point
has a precision of 24 or 0.0625, which is the value of its least significant bit. Any number
within the range of this data type and scaling can be represented to within (24)/2 or
0.03125, which is half the precision. This is an example of representing a number with
finite precision.

Rounding Modes

When you represent numbers with finite precision, not every number in the available
range can be represented exactly. If a number cannot be represented exactly by the
specified data type and scaling, it is rounded to a representable number. Although
precision is always lost in the rounding operation, the cost of the operation and the
amount of bias that is introduced depends on the rounding mode itself. To provide you
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with greater flexibility in the trade-off between cost and bias, DSP System Toolbox
software currently supports the following rounding modes:

Ceiling rounds the result of a calculation to the closest representable number in the
direction of positive infinity.

Convergent rounds the result of a calculation to the closest representable number. In
the case of a tie, Convergent rounds to the nearest even number. This is the least
biased rounding mode provided by the toolbox.

Floor, which is equivalent to truncation, rounds the result of a calculation to the
closest representable number in the direction of negative infinity.

Nearest rounds the result of a calculation to the closest representable number. In the
case of a tie, Nearest rounds to the closest representable number in the direction of
positive infinity.

Round rounds the result of a calculation to the closest representable number. In the
case of a tie, Round rounds positive numbers to the closest representable number in
the direction of positive infinity, and rounds negative numbers to the closest
representable number in the direction of negative infinity.

Simplest rounds the result of a calculation using the rounding mode (Floor or
Zero) that adds the least amount of extra rounding code to your generated code. For
more information, see “Rounding Mode: Simplest” (Fixed-Point Designer).

Zero rounds the result of a calculation to the closest representable number in the
direction of zero.

To learn more about each of these rounding modes, see “Rounding” (Fixed-Point
Designer).

For a direct comparison of the rounding modes, see “Choosing a Rounding Method”
(Fixed-Point Designer).
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Arithmetic Operations

In this section...

“Modulo Arithmetic” on page 12-9
“Two's Complement” on page 12-10
“Addition and Subtraction” on page 12-11
“Multiplication” on page 12-12

“Casts” on page 12-14

Note These sections will help you understand what data type and scaling choices result
in overflows or a loss of precision.

Modulo Arithmetic

Binary math is based on modulo arithmetic. Modulo arithmetic uses only a finite set of
numbers, wrapping the results of any calculations that fall outside the given set back into
the set.

For example, the common everyday clock uses modulo 12 arithmetic. Numbers in this
system can only be 1 through 12. Therefore, in the “clock” system, 9 plus 9 equals 6. This
can be more easily visualized as a number circle:
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9. ... plus 9 more ...

... equals 6.

Similarly, binary math can only use the numbers 0 and 1, and any arithmetic results that
fall outside this range are wrapped “around the circle” to either 0 or 1.

Two's Complement

Two's complement is a way to interpret a binary number. In two's complement, positive
numbers always start with a 0 and negative numbers always start with a 1. If the leading
bit of a two's complement number is 0, the value is obtained by calculating the standard
binary value of the number. If the leading bit of a two's complement number is 1, the
value is obtained by assuming that the leftmost bit is negative, and then calculating the
binary value of the number. For example,

01=0+2%=1
1=(-2H+2%=(-2+1= -1
To compute the negative of a binary number using two's complement,

1 Take the one's complement, or “flip the bits.”
2 Add a1 using binary math.



Arithmetic Operations

3 Discard any bits carried beyond the original word length.

For example, consider taking the negative of 11010 (-6). First, take the one's complement
of the number, or flip the bits:

11010 - 00101

Next, add a 1, wrapping all numbers to 0 or 1:

00101
+1
00110

Addition and Subtraction

The addition of fixed-point numbers requires that the binary points of the addends be
aligned. The addition is then performed using binary arithmetic so that no number other
than 0 or 1 is used.

For example, consider the addition of 010010.1 (18.5) with 0110.110 (6.75):

010010.1  (18.5)
+0110.110 (6.75)
011001.010 (25.25)

Fixed-point subtraction is equivalent to adding while using the two's complement value
for any negative values. In subtraction, the addends must be sign extended to match each
other's length. For example, consider subtracting 0110.110 (6.75) from 010010.1 (18.5):

010010.100 (18.5) o 010010.100 (18.5)
- 0110.110 (8.75) twoscampEment 111001010 (-6.75)

and sign extensian

/10D1D11. 110 ¢11.75)

Carry bitis
discarded.

Most fixed-point DSP System Toolbox blocks that perform addition cast the adder inputs
to an accumulator data type before performing the addition. Therefore, no further shifting
is necessary during the addition to line up the binary points. See “Casts” on page 12-14
for more information.
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Multiplication

The multiplication of two's complement fixed-point numbers is directly analogous to
regular decimal multiplication, with the exception that the intermediate results must be
sign extended so that their left sides align before you add them together.

For example, consider the multiplication of 10.11 (-1.25) with 011 (3):

10,11 (-1.25)
The extra 1 011 (3)
is the resultnf 11011
necessary sign
exfensian. ﬁ
1100.01 (-3.75)

\

The number of fractianal bits of the
result & the sum of the number of
fractional bits of the factars.

Multiplication Data Types

The following diagrams show the data types used for fixed-point multiplication in the
System Toolbox software. The diagrams illustrate the differences between the data types
used for real-real, complex-real, and complex-complex multiplication. See individual
reference pages to determine whether a particular block accepts complex fixed-point
inputs.

In most cases, you can set the data types used during multiplication in the block mask.
For details, see “Casts” on page 12-14.

Note The following diagrams show the use of fixed-point data types in multiplication in
System Toolbox software. They do not represent actual subsystems used by the software
to perform multiplication.

Real-Real Multiplication

The following diagram shows the data types used in the multiplication of two real
numbers in System Toolbox software. The software returns the output of this operation in
the product output data type, as the next figure shows.
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:jr;p;tt: pe Product output

. data type
| MULTIPLIER > .
Input ¢ —
data type

Real-Complex Multiplication

The following diagram shows the data types used in the multiplication of a real and a
complex fixed-point number in System Toolbox software. Real-complex and complex-real
multiplication are equivalent. The software returns the output of this operation in the

product output data type, as the next figure shows.

Input a
data type a
* MULTIPLIER }i"' Product
—* output
dat
aawpetﬂex ac+adi
_|/_
Input c+di »|Im
data type .
——* MULTIPLIER 5

Complex-Complex Multiplication

The following diagram shows the multiplication of two complex fixed-point numbers in
System Toolbox software. Note that the software returns the output of this operation in

the accumulator output data type, as the next figure shows.
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Product
output
Input data type
a+bi a . fac-bd)
data type Be - n
A ) | MuLTIPLIER [ (ad+be)i
—1Im ¢ CAST 1, ac-bd
—‘ SUBTRACTOR
b, CAST JX
“| MULTIPLIER [
i bd Accumulator Re ~_ L'y
data type Im —""
EN ad
MULTIPLIER ] CAST
d L‘ ADDER
Input | ad+be
c+di c b . CAST
datatype | —Re - MULTIPLIER 5
¥
™ m
d Product
output
data type

System Toolbox blocks cast to the accumulator data type before performing addition or
subtraction operations. In the preceding diagram, this is equivalent to the C code

acc=ac;
acc-=bd;

for the subtractor, and

acc=ad;
acc+=bc;

for the adder, where acc is the accumulator.

Casts

Many fixed-point System Toolbox blocks that perform arithmetic operations allow you to
specify the accumulator, intermediate product, and product output data types, as

12-14



Arithmetic Operations

applicable, as well as the output data type of the block. This section gives an overview of
the casts to these data types, so that you can tell if the data types you select will invoke
sign extension, padding with zeros, rounding, and/or overflow.

Casts to the Accumulator Data Type

For most fixed-point System Toolbox blocks that perform addition or subtraction, the
operands are first cast to an accumulator data type. Most of the time, you can specify the
accumulator data type on the block mask. For details, see the description for
Accumulator data type parameter in “Specify Fixed-Point Attributes for Blocks” (DSP
System Toolbox). Since the addends are both cast to the same accumulator data type
before they are added together, no extra shift is necessary to insure that their binary
points align. The result of the addition remains in the accumulator data type, with the
possibility of overflow.

Casts to the Intermediate Product or Product Output Data Type

For System Toolbox blocks that perform multiplication, the output of the multiplier is
placed into a product output data type. Blocks that then feed the product output back into
the multiplier might first cast it to an intermediate product data type. Most of the time,
you can specify these data types on the block mask. For details, see the description for
Intermediate Product and Product Output data type parameters in “Specify Fixed-
Point Attributes for Blocks” (DSP System Toolbox).

Casts to the Output Data Type

Many fixed-point System Toolbox blocks allow you to specify the data type and scaling of
the block output on the mask. Remember that the software does not allow mixed types on
the input and output ports of its blocks. Therefore, if you would like to specify a fixed-
point output data type and scaling for a System Toolbox block that supports fixed-point
data types, you must feed the input port of that block with a fixed-point signal. The final
cast made by a fixed-point System Toolbox block is to the output data type of the block.

Note that although you cannot mix fixed-point and floating-point signals on the input and
output ports of blocks, you can have fixed-point signals with different word and fraction
lengths on the ports of blocks that support fixed-point signals.

Casting Examples

It is important to keep in mind the ramifications of each cast when selecting these
intermediate data types, as well as any other intermediate fixed-point data types that are
allowed by a particular block. Depending upon the data types you select, overflow and/or

12-15



12 Fixed-Point Design

rounding might occur. The following two examples demonstrate cases where overflow and
rounding can occur.

Cast from a Shorter Data Type to a Longer Data Type

Consider the cast of a nonzero number, represented by a four-bit data type with two
fractional bits, to an eight-bit data type with seven fractional bits:

.

source {' The source bits must be shifted up to match the

binary point position of the destination data type.

1 4 o
/ \_/-’—\/\/

This ..hf't from the source data These bits of the destination
pe “falls off" the high end with data are padded with

me shift up. Overflow might occur., Os e s P

The result will saturate or wrap. .

12-16

As the diagram shows, the source bits are shifted up so that the binary point matches the
destination binary point position. The highest source bit does not fit, so overflow might
occur and the result can saturate or wrap. The empty bits at the low end of the
destination data type are padded with either 0's or 1's:

» If overflow does not occur, the empty bits are padded with 0's.

+ If wrapping occurs, the empty bits are padded with 0's.

» If saturation occurs,

* The empty bits of a positive number are padded with 1's.
* The empty bits of a negative number are padded with 0's.

You can see that even with a cast from a shorter data type to a longer data type, overflow
might still occur. This can happen when the integer length of the source data type (in this



Arithmetic Operations

case two) is longer than the integer length of the destination data type (in this case one).
Similarly, rounding might be necessary even when casting from a shorter data type to a
longer data type, if the destination data type and scaling has fewer fractional bits than the
source.

Cast from a Longer Data Type to a Shorter Data Type

Consider the cast of a nonzero number, represented by an eight-bit data type with seven
fractional bits, to a four-bit data type with two fractional bits:

.

source The source bits must be shifted down to match the
binary point position of the destination data type.
destination

r— T - T ~-T~-T "1
‘ Lo L L4

-

These bits from the source

do not fit into the destination
There is no value for this bit data type. The result is rounded.
from the source, so the result
must be sign-extended to fill
the destination data type.

As the diagram shows, the source bits are shifted down so that the binary point matches
the destination binary point position. There is no value for the highest bit from the source,
so the result is sign extended to fill the integer portion of the destination data type. The
bottom five bits of the source do not fit into the fraction length of the destination.
Therefore, precision can be lost as the result is rounded.

In this case, even though the cast is from a longer data type to a shorter data type, all the
integer bits are maintained. Conversely, full precision can be maintained even if you cast
to a shorter data type, as long as the fraction length of the destination data type is the
same length or longer than the fraction length of the source data type. In that case,
however, bits are lost from the high end of the result and overflow might occur.
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The worst case occurs when both the integer length and the fraction length of the
destination data type are shorter than those of the source data type and scaling. In that
case, both overflow and a loss of precision can occur.
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Fixed-Point Support for MATLAB System Objects

In this section...

“Getting Information About Fixed-Point System Objects” on page 12-19
“Setting System Object Fixed-Point Properties” on page 12-20

For information on working with Fixed-Point features, refer to the “Fixed-Point”topic.

Getting Information About Fixed-Point System Objects

System objects that support fixed-point data processing have fixed-point properties. When
you display the properties of a System object, click Show all properties at the end of
the property list to display the fixed-point properties for that object. You can also display
the fixed-point properties for a particular object by typing
vision.<ObjectName>.helpFixedPoint at the command line.

The following Computer Vision Toolbox objects support fixed-point data processing.

Fixed-Point Data Processing Support
vision.AlphaBlender
vision.Autocorrelator
vision.BlobAnalysis
vision.BlockMatcher
vision.Convolver
vision.Crosscorrelator
vision.DCT
vision.Deinterlacer
vision.DemosaicInterpolator
vision.FFT
vision.HoughLines
vision.IDCT

vision.IFFT

vision.Maximum

vision.Mean

vision.Median
vision.Minimum
vision.Pyramid
vision.Variance
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Setting System Object Fixed-Point Properties

Several properties affect the fixed-point data processing used by a System object. Objects
perform fixed-point processing and use the current fixed-point property settings when
they receive fixed-point input.

You change the values of fixed-point properties in the same way as you change any
System object property value. You also use the Fixed-Point Designer numerictype object
to specify the desired data type as fixed point, the signedness, and the word- and fraction-
lengths.

In the same way as for blocks, the data type properties of many System objects can set
the appropriate word lengths and scalings automatically by using full precision. System
objects assume that the target specified on the Configuration Parameters Hardware
Implementation target is ASIC/FPGA.

If you have not set the property that activates a dependent property and you attempt to
change that dependent property, you will get a warning message.

You must set the property that activates a dependent property before attempting to
change the dependent property. If you do not set the activating property, you will get a
warning message.

Note System objects do not support fixed-point word lengths greater than 128 bits.

For any System object provided in the Toolbox, the fimath settings for any fimath attached
to a fi input or a fi property are ignored. Outputs from a System object never have an
attached fimath.
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Specify Fixed-Point Attributes for Blocks

In this section...

“Fixed-Point Block Parameters” on page 12-21

“Specify System-Level Settings” on page 12-24

“Inherit via Internal Rule” on page 12-24

“Specify Data Types for Fixed-Point Blocks” on page 12-35

Fixed-Point Block Parameters

System Toolbox blocks that have fixed-point support usually allow you to specify fixed-
point characteristics through block parameters. By specifying data type and scaling
information for these fixed-point parameters, you can simulate your target hardware more

closely.

Note Floating-point inheritance takes precedence over the settings discussed in this
section. When the block has floating-point input, all block data types match the input.

You can find most fixed-point parameters on the Data Types pane of System Toolbox
blocks. The following figure shows a typical Data Types pane.
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Main Data Types
Fixed-point operational parameters

Rounding mode: | Floor ~ | [ saturate on integer overflow

Floating-point inheritance takes precedence over the settings in the 'Data Type' column below. When the block input is floating
point, all block data types match the input. When the block input is fixed point, all internal data types are signed fixed point.

Data Type Minimum Maximum
Sine table: | Inherit: Same word length as i v| >> M/A NfA
Product output: | Inherit: Inherit via internal rub v| > N/A N/A
Accumulator: | Inherit: Inherit via internal rul v| > N/A N/A
Output: | Inherit: Inherit via internal rul v| > |[] | : |[]

[ Lock data type settings against changes by the fixed-point toals

All System Toolbox blocks with fixed-point capabilities share a set of common parameters,
but each block can have a different subset of these fixed-point parameters. The following
table provides an overview of the most common fixed-point block parameters.

Fixed-Point Data Type|Description

Parameter

Rounding Mode Specifies the rounding mode for the block to use when the
specified data type and scaling cannot exactly represent the
result of a fixed-point calculation.
See “Rounding Modes” on page 12-7 for more information on
the available options.

Saturate on integer When you select this parameter, the block saturates the result

overflow of its fixed-point operation. When you clear this parameter, the
block wraps the result of its fixed-point operation.
For details on saturate and wrap, see “Overflow Handling” on
page 12-7 for fixed-point operations.
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Fixed-Point Data Type
Parameter

Description

Intermediate Product

Specifies the data type and scaling of the intermediate product
for fixed-point blocks. Blocks that feed multiplication results
back to the input of the multiplier use the intermediate product
data type.

See the reference page of a specific block to learn about the
intermediate product data type for that block.

Product Output

Specifies the data type and scaling of the product output for
fixed-point blocks that must compute multiplication results.

See the reference page of a specific block to learn about the
product output data type for that block. For or complex-
complex multiplication, the multiplication result is in the
accumulator data type. See “Multiplication Data Types” on
page 12-12 for more information on complex fixed-point
multiplication in System toolbox software.

Accumulator

Specifies the data type and scaling of the accumulator (sum) for
fixed-point blocks that must hold summation results for further

calculation. Most such blocks cast to the accumulator data type
before performing the add operations (summation).

See the reference page of a specific block for details on the
accumulator data type of that block.

Output

Specifies the output data type and scaling for blocks.

Using the Data Type Assistant

The Data Type Assistant is an interactive graphical tool available on the Data Types
pane of some fixed-point System Toolbox blocks.

To learn more about using the Data Type Assistant to help you specify block data type
parameters, see “Specify Data Types Using Data Type Assistant” (Simulink).

Checking Signal Ranges

Some fixed-point System Toolbox blocks have Minimum and Maximum parameters on
the Data Types pane. When a fixed-point data type has these parameters, you can use
them to specify appropriate minimum and maximum values for range checking purposes.
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To learn how to specify signal ranges and enable signal range checking, see “Signal
Ranges” (Simulink).

Specify System-Level Settings

You can monitor and control fixed-point settings for System Toolbox blocks at a system or
subsystem level with the Fixed-Point Tool. For more information, see fxptdlg and
“Fixed-Point Tool” (Fixed-Point Designer).

Logging

The Fixed-Point Tool logs overflows, saturations, and simulation minimums and
maximums for fixed-point System Toolbox blocks. The Fixed-Point Tool does not log
overflows and saturations when the Data overflow line in the Diagnostics > Data
Integrity pane of the Configuration Parameters dialog box is set to None.

Autoscaling

You can use the Fixed-Point Tool autoscaling feature to set the scaling for System Toolbox
fixed-point data types.

Data type override

System Toolbox blocks obey the Use local settings, Double, Single, and Off
modes of the Data type override parameter in the Fixed-Point Tool. The

Scaled double mode is also supported for System Toolboxes source and byte-shuffling
blocks, and for some arithmetic blocks such as Difference and Normalization.

Inherit via Internal Rule

Selecting appropriate word lengths and scalings for the fixed-point parameters in your
model can be challenging. To aid you, an Inherit via internal rule choice is often
available for fixed-point block data type parameters, such as the Accumulator and
Product output signals. The following sections describe how the word and fraction
lengths are selected for you when you choose Inherit via internal rule fora
fixed-point block data type parameter in System Toolbox software:

* “Internal Rule for Accumulator Data Types” on page 12-25
* “Internal Rule for Product Data Types” on page 12-25
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* “Internal Rule for Output Data Types” on page 12-26

* “The Effect of the Hardware Implementation Pane on the Internal Rule”
on page 12-26

» “Internal Rule Examples” on page 12-28

Note In the equations in the following sections, WL = word length and FL = fraction
length.

Internal Rule for Accumulator Data Types

The internal rule for accumulator data types first calculates the ideal, full-precision result.
Where N is the number of addends:

WLigealaccumulator = WLinputtoaccumulator + floor(loga(N — 1)) + 1

FLigealaccumulator = FLinputtoaccumulator

For example, consider summing all the elements of a vector of length 6 and data type
sfix10 En8. The ideal, full-precision result has a word length of 13 and a fraction length of
8.

The accumulator can be real or complex. The preceding equations are used for both the
real and imaginary parts of the accumulator. For any calculation, after the full-precision
result is calculated, the final word and fraction lengths set by the internal rule are
affected by your particular hardware. See “The Effect of the Hardware Implementation
Pane on the Internal Rule” on page 12-26 for more information.

Internal Rule for Product Data Types

The internal rule for product data types first calculates the ideal, full-precision result:
WLidealproduct = WLinputl + WLinputZ
FLigealproduct = FLinput1 + FLinput2

For example, multiplying together the elements of a real vector of length 2 and data type
sfix10 En8. The ideal, full-precision result has a word length of 20 and a fraction length of
16.

For real-complex multiplication, the ideal word length and fraction length is used for both
the complex and real portion of the result. For complex-complex multiplication, the ideal
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word length and fraction length is used for the partial products, and the internal rule for
accumulator data types described above is used for the final sums. For any calculation,
after the full-precision result is calculated, the final word and fraction lengths set by the
internal rule are affected by your particular hardware. See “The Effect of the Hardware
Implementation Pane on the Internal Rule” on page 12-26 for more information.

Internal Rule for Output Data Types

A few System Toolbox blocks have an Inherit via internal rule choice available
for the block output. The internal rule used in these cases is block-specific, and the
equations are listed in the block reference page.

As with accumulator and product data types, the final output word and fraction lengths
set by the internal rule are affected by your particular hardware, as described in “The
Effect of the Hardware Implementation Pane on the Internal Rule” on page 12-26.

The Effect of the Hardware Implementation Pane on the Internal Rule

The internal rule selects word lengths and fraction lengths that are appropriate for your
hardware. To get the best results using the internal rule, you must specify the type of
hardware you are using on the Hardware Implementation pane of the Configuration
Parameters dialog box. You can open this dialog box from the Simulation menu in your
model.
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\.E‘:o}. Configuration Parameters: vdp/Configuration (Active) @
Selact: Embedded hardware (simulation and code generation) n
- Salver Device vendor: IGeneric '] Device type: IUnspeciﬁed (assume 32-bit Generic) ']
i Data Impaort/Export
%--Optimization Number of bits Largest atomic size
?--Diagnostics char: 8 short: 16 int: 32 .
- Hardware Implementation integer: IChar '] =
-~ Model Referencing long: 32 float: 32 double: |64
+- Simulation Target floating-point: |None -
+=tmuiation a.rge native: |32 pointer: |32 ot I I
+- Code Generation
Byte ordering: | Unspecified Signed integer division rounds to: |Undefined -

Shift right on a signed integer as arithmetic shift

Emulation hardware (code generation only)

Configure current execution hardware device

L1} 3

Ok H Cancel H Help Apply

ASIC/FPGA

On an ASIC/FPGA target, the ideal, full-precision word length and fraction length
calculated by the internal rule are used. If the calculated ideal word length is larger than
the largest allowed word length, you receive an error.

Other targets

For all targets other than ASIC/FPGA, the ideal, full-precision word length calculated by
the internal rule is rounded up to the next available word length of the target. The
calculated ideal fraction length is used, keeping the least-significant bits.

If the calculated ideal word length for a product data type is larger than the largest word
length on the target, you receive an error. If the calculated ideal word length for an
accumulator or output data type is larger than the largest word length on the target, the
largest target word length is used.

The largest word length allowed for Simulink and System Toolbox software on any target
is 128 bits.
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Internal Rule Examples

The following sections show examples of how the internal rule interacts with the
Hardware Implementation pane to calculate accumulator data types on page 12-28
and product data types on page 12-31.

Accumulator Data Types

Consider the following model ex internalRule accumExp.

-

W ex_internalRule_accumExp = | = | &2
File Edit View Simulation Format Tools Help
O =S » |'|D.D |Nu:urrna| -

¥

2.5 sficcd_End . sficc10_End
[ ] )

Caonstant Difference

sfice17T_End

2.5 sficc1S_End . —
[5] w2 )

Constanti Difference1

¥

2.5 =fix127_End
1.25

£fix128 End
Diff k= w3

Cutd

¥

Constant2 Differencez

Ready 100% FixedStepDiscrete

In the Difference blocks, the Accumulator parameter is set to Inherit: Inherit via
internal rule, and the Output parameter is set to Inherit: Same as
accumulator. Therefore, you can see the accumulator data type calculated by the
internal rule on the output signal in the model.
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In the preceding model, the Device type parameter in the Hardware Implementation
pane of the Configuration Parameters dialog box is set to ASIC/FPGA. Therefore, the
accumulator data type used by the internal rule is the ideal, full-precision result.

Calculate the full-precision word length for each of the Difference blocks in the model:

WLidealaccumulator = WLinputtoaccumulator + floor(logy(numberofaccumulations)) + 1
WLigealaccumulator = 9 + floor(logo(1)) + 1
WLidealaccumulator =9 +0+1 =10

WLidealaccumulatorl = WLinputtoaccumulatorl + floor(logy(numberofaccumulations)) + 1
W Lidealaccumulator1 = 16 + floor(logy(1)) + 1
WLidealaccumulator1 =16 + 0+ 1 =17

WLidealaccumulator2 = WLinputtoaccumulator2 + floor(loga(numberofaccumulations)) + 1
WlLidealaccumulator2 = 127 + floor(logp(1)) + 1
WLidealaccumulator2 = 127 + 0+ 1 =128

Calculate the full-precision fraction length, which is the same for each Matrix Sum block
in this example:

FLigealaccumulator = FLinputtoaccumulator

FLidealaccumulator = 4

Now change the Device type parameter in the Hardware Implementation pane of the
Configuration Parameters dialog box to 32—bit Embedded Processor, by changing the
parameters as shown in the following figure.
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-

+-Optimization
+-Diagnostics

ardware Implementation
Model Referencing
-Simulation Target

-Code Generation

~HDL Code Generation

¥

% Configuration Parameters: ex_internalRule_accumExp/Configuration (Active)

Embedded hardware (simulation and code generation)

Device vendor: [Generic

32-bit Embedded Pr =

'] Device type:

Number of bits

char: 8 short: 16 int:
long: 32 float: 32 double:
native: | 32 pointer: |32

Largest atomic size

32

integer: [Char

7
7

floating-point: [None

Byte ordering: [Unspeciﬁed

¥ | Signed integer division rounds to: |Undefined ~

Shift right on a signed integer as arithmetic shift

Emulation hardware (code generation only)

[C] None

Device vendor: [Generic

'] Device type: [32—bit Embedded Processor

Number of bits

char: 8 short: 16 int: 32
long: 32 float: 32 double: |64
native: 32 pointer: | 32

Largest atomic size

integer: [Char

floating-point: [None

Byte ordering: |Unspecified

¥ | Signed integer division rounds to: |Undefined A

Shift right on a signed integer as arithmetic shift

[ 0K J[ Cancel H Help ] Apply

LX |

»

m

As you can see in the dialog box, this device has 8-, 16-, and 32-bit word lengths available.

Therefore, the ideal word lengths of 10, 17, and 128 bits calculated by the internal rule
cannot be used. Instead, the internal rule uses the next largest available word length in
each case You can see this if you rerun the model, as shown in the following figure.
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EJ ex_internalRule_accumExp *

[o]lE =]

File Edit View Sirnulation Format Tecols Help
=== » 100 [Nomal M
- sfic®_End . sfic16_End
[0 | = w  Dif 1)
Cutl
Caonstant Difference
2.5 sfic16_End . sfoedZ_End —
I: 1.25 :I = > it > :)‘
Cut2
Constantt Difference1
2.5 sfm1Z7_End . sfoedZ_End
[ 1.25 :I = > it =:)3
Cut2
Constant2 Difference?
Ready 100% FixedStepDiscrete

Product Data Types

Consider the following model ex_internalRule prodExp.
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W/ = internalRule_prodExp = = | =2 |
File Edit View Sirnulation Format Teools Help
O = H & » |D |Nu:urrna| -

"
“ Amray-Vector

Multiply

Out1

Array-Vector
Multiply

A

“ Amay-Vector

-
IR

v Multiply
[ = ]
Amray-Vector
Multiply1
Ready 100% Fixed5tepDiscrete

In the Array-Vector Multiply blocks, the Product Output parameter is set to Inherit:
Inherit via internal rule, and the Output parameteris set to Inherit: Same
as product output. Therefore, you can see the product output data type calculated by
the internal rule on the output signal in the model. The setting of the Accumulator
parameter does not matter because this example uses real values.

For the preceding model, the Device type parameter in the Hardware Implementation
pane of the Configuration Parameters dialog box is set to ASIC/FPGA. Therefore, the
product data type used by the internal rule is the ideal, full-precision result.

Calculate the full-precision word length for each of the Array-Vector Multiply blocks in the
model:
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WLidealproduct = WLinputa + WLinputb
WLidealproduct =7+5=12

WLigeaiproduct1 = WLinputa + WLinputb
Wligealproduct1 = 16 + 15 = 31

Calculate the full-precision fraction length, which is the same for each Array-Vector
Multiply block in this example:

FLidealaccumulator = FLinputtoaccumulator

FLidealaccumulator = 4

Now change the Device type parameter in the Hardware Implementation pane of the
Configuration Parameters dialog box to 32—bit Embedded Processor, as shown in the
following figure.
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4%9 Cenfiguration Parameters: ex_internalRule_prodExp/Configuration (Active) @
Select: Embedded hardware (simulation and code generation) '
i Solver Device vendor: ’Generic '] Device type: 32-bit Embedded Pri *

Data Import/Export

i--OptimizatiUn Number of bits Largest atomic size

~Diagrostics char: |8 shart: 16 int: 32 )

Hardware Implementat... integer: [Char v]
- Model Referencing long: 32 float: 32 double: |64
+- Simulation Target floating-point: |None -
+ imuiation farge native: |32 pointer: | 32 gp ’ ]

-Code Generation
-HDOL Code Generation

]

1-

Byte ordering: ’Unspeciﬁed - | Signed integer division rounds to:

Shift right on a signed integer as arithmetic shift

m

Emulation hardware (code generation only)

[T mone
Device vendor: ’Generic v] Device type: ’MATLAE Host Computer v]
MNumber of bits Largest atomic size
char: |8 short: |16 int: 32 i ’Char v]
long: 32 float: 32 double: |64
) ) floating-point: ’None ']
native: |32 pointer: |32

Byte ordering: |Little Endian Signed integer division rounds to: |Undefined al I

Shift right on a signed integer as arithmetic shift

1| 1 2

5.}' [ 0K ][ Cancel H Help ] Apply

As you can see in the dialog box, this device has 8-, 16-, and 32-bit word lengths available.
Therefore, the ideal word lengths of 12 and 31 bits calculated by the internal rule cannot
be used. Instead, the internal rule uses the next largest available word length in each
case. You can see this if you rerun the model, as shown in the following figure.
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Specify Data Types for Fixed-Point Blocks

The following sections show you how to use the Fixed-Point Tool to select appropriate
data types for fixed-point blocks in the ex fixedpoint tut model:

* “Prepare the Model” on page 12-35

* “Use Data Type Override to Find a Floating-Point Benchmark” on page 12-40
* “Use the Fixed-Point Tool to Propose Fraction Lengths” on page 12-40

+ “Examine the Results and Accept the Proposed Scaling” on page 12-41

Prepare the Model
1 Open the model by typing ex fixedpoint tut at the MATLAB command line.
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Fixed-Point Socurces
Copyright 2008-2010 The MathWeorks, Inc.
Ready 100%: FixedStepDiscrete
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This model uses the Cumulative Sum block to sum the input coming from the Fixed-
Point Sources subsystem. The Fixed-Point Sources subsystem outputs two signals
with different data types:

* The Signed source has a word length of 16 bits and a fraction length of 15 bits.

* The Unsigned source has a word length of 16 bits and a fraction length of 16 bits.

2 Run the model to check for overflow. MATLAB displays the following warnings at the

command line:

Warning: Overflow occurred. This originated from
'ex fixedpoint tut/Signed Cumulative Sum'.
Warning: Overflow occurred. This originated from
'ex fixedpoint tut/Unsigned Cumulative Sum'.

According to these warnings, overflow occurs in both Cumulative Sum blocks.

3 To investigate the overflows in this model, use the Fixed-Point Tool. You can open the
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Fixed-Point Tool by selecting Tools > Fixed-Point > Fixed-Point Tool from the
model menu. Turn on logging for all blocks in your model by setting the Fixed-point
instrumentation mode parameter to Minimums, maximums and overflows.
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4 Now that you have turned on logging, rerun the model by clicking the Simulation

button.

Fixed-Point Tool
File Collect Autoscaling

B ® e oT 0§

Model Hierarchy

Results

4 L Fixed-Paint Tool Root
4 ex_fixedpoint_tut
> Fixed-Point Sources

Run View Tools Help

B8 Eon =5

Show:[AII results

3

Contents of: ex_fixedpoint_tut

Column View: |Simulation View ¥ | Show Detsils

Na}me Run CompiledDT SpecifiedDT SimMin

Fixed-point preparation for selected system

Fixed-Point Advisor

Shortcuts to set up runs

Model-wide double override and full instrumentation

Model-wide no override and full instrumentation
AddEdit shortcuts
Settings for selected system

Fixed-point instrumentation mode:

[Use local settings -

Data type override:

Use local settings -

Data collection

Store results in run:

Simulate

[7] Merge instrumentation results from multiple simulations

Run 1

Derive minfmax values for selected system
Highlight results with potential issues
Automatic data typing for selected system

Propose fraction lengths Configure...

Apply accepted fraction lengths

Show details for selected result

Apply

J- Revert

5 The results of the simulation appear in a table in the central Contents pane of the
Fixed-Point Tool. Review the following columns:

12-37




12 Fixed-Point Design

12-38

* Name — Provides the name of each signal in the following format: Subsystem
Name/Block Name: Signal Name.

* SimDT — The simulation data type of each logged signal.

* SpecifiedDT — The data type specified on the block dialog for each signal.

* SimMin — The smallest representable value achieved during simulation for each
logged signal.

* SimMax — The largest representable value achieved during simulation for each
logged signal.

* OverflowWraps — The number of overflows that wrap during simulation.

For more information on each of the columns in this table, see the “Contents Pane”
(Simulink) section of the Simulink fxptdlg function reference page.

You can also see that the SimMin and SimMax values for the Accumulator data
types range from 0 to .9997. The logged results indicate that 8,192 overflows
wrapped during simulation in the Accumulator data type of the Signed Cumulative
Sum block. Similarly, the Accumulator data type of the Unsigned Cumulative Sum
block had 16,383 overflows wrap during simulation.

To get more information about each of these data types, highlight them in the

Contents pane, and click the Show details for selected result button (ﬁl)
Assume a target hardware that supports 32-bit integers, and set the Accumulator
word length in both Cumulative Sum blocks to 32. To do so, perform the following
steps:

1 Right-click the Signed Cumulative Sum: Accumulator row in the Fixed-
Point Tool pane, and select Highlight Block In Model.

2 Double-click the block in the model, and select the Data Types pane of the
dialog box.

3 Open the Data Type Assistant for Accumulator by clicking the Assistant

button (g) in the Accumulator data type row.

4 Setthe Mode to Fixed Point. To see the representable range of the current
specified data type, click the Fixed-point details link. The tool displays the
representable maximum and representable minimum values for the current data

type.
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E Function Block Parameters: Signed Cumulative Sum @

Cumulative Sum

Cumulative sum of input matrix or input vector elements along the specified dimension: rows, columns, or channels.

Data Types

Fixed-point operational parameters

Rounding mode: ’Floor - | Overflow mode: |Wrap ']

Floating-point inheritance takes precedence over the settings in the 'Data Type' column below. When the block input is floating point, all block data types
match the input.

Data Type Assistant Minimum Maximum

Accumulator: fixdt([1,16,0) - [ <<

Data Type Assistant for Accumulator

Mode: |Fixed point v | Signedness: Word length: 16
Scaling: Binary peint ~ | Fraction length: 0
Data type override:

El  Fixed-point details

Representable maximum: 32767  Assuming signed
Representable minimum:  -32768  Assuming signed
Precision: 1 Refresh Details
Output: Inherit: Same as accumulator ~ == ] 0 M

[T] Lock data type settings against changes by the fixed-point tools

\._) [ oK ” Cancel H Help H Apply

5 Change the Word length to 32, and click the Refresh details button in the
Fixed-point details section to see the updated representable range. When you
change the value of the Word length parameter, the Data Type edit box
automatically updates.

6 Click OK on the block dialog box to save your changes and close the window.
Set the word length of the Accumulator data type of the Unsigned Cumulative
Sum block to 32 bits. You can do so in one of two ways:

* Type the data type fixdt([],32,0) directly into Data Type edit box for the
Accumulator data type parameter.
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* Perform the same steps you used to set the word length of the Accumulator
data type of the Signed Cumulative Sum block to 32 bits.
To verify your changes in word length and check for overflow, rerun your model. To
do so, click the Simulate button in the Fixed-Point Tool.

The Contents pane of the Fixed-Point Tool updates, and you can see that no
overflows occurred in the most recent simulation. However, you can also see that the
SimMin and SimMax values range from 0 to 0. This underflow happens because the
fraction length of the Accumulator data type is too small. The SpecifiedDT cannot
represent the precision of the data values. The following sections discuss how to find
a floating-point benchmark and use the Fixed-Point Tool to propose fraction lengths.

Use Data Type Override to Find a Floating-Point Benchmark

The Data type override feature of the Fixed-Point tool allows you to override the data
types specified in your model with floating-point types. Running your model in Double
override mode gives you a reference range to help you select appropriate fraction lengths
for your fixed-point data types. To do so, perform the following steps:

1
2
3

Open the Fixed-Point Tool and set Data type override to Double.

Run your model by clicking the Run simulation and store active results button.
Examine the results in the Contents pane of the Fixed-Point Tool. Because you ran
the model in Double override mode, you get an accurate, idealized representation of
the simulation minimums and maximums. These values appear in the SimMin and
SimMax parameters.

Now that you have an accurate reference representation of the simulation minimum
and maximum values, you can more easily choose appropriate fraction lengths.
Before making these choices, save your active results to reference so you can use
them as your floating-point benchmark. To do so, select Results > Move Active
Results To Reference from the Fixed-Point Tool menu. The status displayed in the
Run column changes from Active to Reference for all signals in your model.

Use the Fixed-Point Tool to Propose Fraction Lengths

Now that you have your Double override results saved as a floating-point reference, you
are ready to propose fraction lengths.

1

To propose fraction lengths for your data types, you must have a set of Active
results available in the Fixed-Point Tool. To produce an active set of results, simply
rerun your model. The tool now displays both the Active results and the Reference
results for each signal.
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Select the Use simulation min/max if design min/max is not available check
box. You did not specify any design minimums or maximums for the data types in this
model. Thus, the tool uses the logged information to compute and propose fraction
lengths. For information on specifying design minimums and maximums, see “Signal
Ranges” (Simulink).

-FL
Click the Propose fraction lengths button ( . ). The tool populates the proposed
data types in the ProposedDT column of the Contents pane. The corresponding
proposed minimums and maximums are displayed in the ProposedMin and

ProposedMax columns.

Examine the Results and Accept the Proposed Scaling

Before accepting the fraction lengths proposed by the Fixed-Point Tool, it is important to
look at the details of that data type. Doing so allows you to see how much of your data the
suggested data type can represent. To examine the suggested data types and accept the
proposed scaling, perform the following steps:

1

In the Contents pane of the Fixed-Point Tool, you can see the proposed fraction
lengths for the data types in your model.

* The proposed fraction length for the Accumulator data type of both the Signed
and Unsigned Cumulative Sum blocks is 17 bits.

* To get more details about the proposed scaling for a particular data type,
highlight the data type in the Contents pane of the Fixed-Point Tool.

* Open the Autoscale Information window for the highlighted data type by clicking

the Show autoscale information for the selected result button (ﬂl).
When the Autoscale Information window opens, check the Value and Percent
Proposed Representable columns for the Simulation Minimum and Simulation
Maximum parameters. You can see that the proposed data type can represent 100%
of the range of simulation data.
To accept the proposed data types, select the check box in the Accept column for
each data type whose proposed scaling you want to keep. Then, click the Apply

accepted fraction lengths button (iﬁﬂl). The tool updates the specified data types
on the block dialog boxes and the SpecifiedDT column in the Contents pane.

To verify the newly accepted scaling, set the Data type override parameter back to
Use local settings, and run the model. Looking at Contents pane of the Fixed-Point
Tool, you can see the following details:
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The SimMin and SimMax values of the Active run match the SimMin and
SimMax values from the floating-point Reference run.

There are no longer any overflows.

The SimDT does not match the SpecifiedDT for the Accumulator data type of
either Cumulative Sum block. This difference occurs because the Cumulative Sum
block always inherits its Signedness from the input signal and only allows you to
specify a Signedness of Auto. Therefore, the SpecifiedDT for both Accumulator
data typesis fixdt([],32,17). However, because the Signed Cumulative Sum
block has a signed input signal, the SimDT for the Accumulator parameter of that
block is also signed (fixdt(1,32,17)). Similarly, the SimDT for the
Accumulator parameter of the Unsigned Cumulative Sum block inherits its
Signedness from its input signal and thus is unsigned (fixdt(0,32,17)).
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* “Code Generation in MATLAB” on page 13-2

* “Code Generation Support, Usage Notes, and Limitations” on page 13-3

* “Simulink Shared Library Dependencies” on page 13-8

* “Accelerating Simulink Models” on page 13-9

» “Portable C Code Generation for Functions That Use OpenCV Library” on page 13-10
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Code Generation in MATLAB

Several Computer Vision Toolbox functions have been enabled to generate C/C++ code.
To use code generation with computer vision functions, follow these steps:

13-2

Write your Computer Vision Toolbox function or application as you would normally,
using functions from the Computer Vision Toolbox.

Add the %#codegen compiler directive to your MATLAB code.

Open the MATLAB Coder app, create a project, and add your file to the project. Once
in MATLAB Coder, you can check the readiness of your code for code generation. For
example, your code may contain functions that are not enabled for code generation.
Make any modifications required for code generation.

Generate code by clicking Generate in the Generate Code dialog box. You can choose
to build a MEX file, a C/C++ shared library, a C/C++ dynamic library, or a C/C++
executable.

Even if you addressed all readiness issues identified by MATLAB Coder, you might still
encounter build issues. The readiness check only looks at function dependencies.
When you try to generate code, MATLAB Coder might discover coding patterns that
are not supported for code generation. View the error report and modify your MATLAB
code until you get a successful build.

For more information about code generation, see the MATLAB Coder documentation and
the “Introduction to Code Generation with Feature Matching and Registration” example.

Note To generate code from MATLAB code that contains Computer Vision Toolbox
functionality, you must have the MATLAB Coder software.

When working with generated code, note the following:

For some Computer Vision Toolbox functions, code generation includes creation of a
shared library.

Refer to the “Code Generation Support, Usage Notes, and Limitations” on page 13-3
for supported functionality, usages, and limitations.
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Code Generation Support, Usage Notes, and Limitations

Code Generation Support, Usage Notes, and Limitations for Functions, Classes, and

System Objects

To generate code from MATLAB code that contains Computer Vision Toolbox functions,

classes, or System objects, you must have the MATLAB Coder software.

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+

+ code generation.

Name

Feature Detection, Extraction, and Matching

BRISKPoints*

cornerPoints*

detectBRISKFeatures*

detectFASTFeatures*

detectHarrisFeatures*

detectMinEigenFeatures*

detectMSERFeatures*

detectORBFeatures

detectSURFFeatures*

extractFeatures

extractHOGFeatures*

extractLBPFeatures*

matchFeatures*

MSERRegions*

ORBPoints*

SURFPoints*

Point Cloud Processing

findNearestNeighbors*

findNeighborsInRadius*
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Name

findPointsInROI*

pcdenoise*

pcdownsample*

pcfitcylinder*

pcfitplane*

pcfitsphere*

pcmerge*

pcnormals*

pcregistercpd*

pcsegdist*

pctransform*

pointCloud*

removeInvalidPoints*

segmentLidarData*

select*

Image Registration and Geometric Transformations

estimateGeometricTransform*

Object Detection and Recognition

acfObjectDetector*

detect of acfObjectDetector*

ocr¥*

ocrText*

vision.PeopleDetector*

vision.CascadeObjectDetector*

Tracking and Motion Estimation

assignDetectionsToTracks

estimateFlow

opticalFlow
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Name

opticalFlowFarneback

opticalFlowHS

opticalFlowLKDoG

opticalFlowLK

reset

vision.ForegroundDetector*

vision.HistogramBasedTracker*

vision.KalmanFilter*

vision.PointTracker¥*

vision.TemplateMatcher*

Camera Calibration and Stereo Vision

bboxOverlapRatio

bbox2points

disparity*

disparityBM

disparitySGM

cameraPoseToExtrinsics

cameraMat rix*

cameraPose*

cameraParameters*

detectCheckerboardPoints*

epipolarLine

estimateEssentialMatrix*

estimateFundamentalMatrix*

estimateUncalibratedRectification

estimateWorldCameraPose*

extrinsics*

extrinsicsToCameraPose

13-5



13 Code Generation

Name

generateCheckerboardPoints

isEpipoleInImage

lineToBorderPoints

reconstructScene*

rectifyStereoImages*

relativeCameraPose*

rotationMatrixToVector

rotationVectorToMatrix

selectStrongestBbox

stereoAnaglyph

stereoParameters*

triangulate*

undistortImage*

Statistics

vision.BlobAnalysis*

vision.LocalMaximaFinder*

vision.Maximum*

vision.Mean*

vision.Median*

vision.Minimum*

vision.StandardDeviation*

vision.Variance*

Filters, Transforms, and Enhancements

integrallImage

vision.Deinterlacer*

Video Loading, Saving, and Streaming

vision.DeployableVideoPlayer

vision.VideoFileReader*
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Name

vision.VideoFileWriter*

Color Space Formatting and Conversions

vision.ChromaResampler#*

vision.GammaCorrector*

Graphics

insertMarker*

insertShape*

insertObjectAnnotation*

insertText*

vision.AlphaBlender*

13-7



13 Code Generation

Simulink Shared Library Dependencies

13-8

In general, the code you generate from Computer Vision Toolbox blocks is portable ANSI®
C code. After you generate the code, you can deploy it on another machine. For more
information on how to do so, see “Relocate Code to Another Development Environment”
(Simulink Coder).

There are a few Computer Vision Toolbox blocks that generate code with limited
portability. These blocks use precompiled shared libraries, such as DLLs, to support I/O
for specific types of devices and file formats. To find out which blocks use precompiled
shared libraries, open the Computer Vision Toolbox Block Support Table. You can identify
blocks that use precompiled shared libraries by checking the footnotes listed in the Code
Generation Support column of the table. All blocks that use shared libraries have the
following footnote:

Host computer only. Excludes Simulink Desktop Real-Time™ target.

Simulink Coder provides functions to help you set up and manage the build information
for your models. For example, one of the Build Information functions that Simulink Coder
provides is getNonBuildFiles. This function allows you to identify the shared libraries
required by blocks in your model. If your model contains any blocks that use precompiled
shared libraries, you can install those libraries on the target system. The folder that you
install the shared libraries in must be on the system path. The target system does not
need to have MATLAB installed, but it does need to be supported by MATLAB.


matlab:showvipblockdatatypetable

Accelerating Simulink Models

Accelerating Simulink Models

The Simulink software offer Accelerator and Rapid Accelerator simulation modes
that remove much of the computational overhead required by Simulink models. These
modes compile target code of your model. Through this method, the Simulink
environment can achieve substantial performance improvements for larger models. The
performance gains are tied to the size and complexity of your model. Therefore, large
models that contain Computer Vision Toolbox blocks run faster in Rapid Accelerator

or Accelerator mode.

To change between Rapid Accelerator, Accelerator, and Normal mode, use the
drop-down list at the top of the model window.

J'.'ﬁ ex_vision_count_objects - Simulink EI@
File Edit View Display Diagram Analysis Code Tools Help
. E HE é@_ Update Diagram Ctrl+D wl (A ~| it o
Eﬂj: — @ @ Model Configuration Parameters Ctrl+E .
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Mode 3 N | i
® @ex_vision_c-:-unt_-:-bjects . E\}‘- v orma
Data Display b Accelerator 1
@& Stateflow Animation Rapid Acceleratar
EI s Enable East Restart Software-in-the-Loop (SIL)
— Step back (uninitialized) Processor-in-the-Loop (PIL)
@ Run Ctrl+T ———
> Step Forward
_ testpat!.png Image |—|
) Stop Ctrl+Shift+T
Image From File Output »
i
&P Stepping Options
200
Debug ¥ | count b l:l
(& Constant
\— Display
5 Label
»
Ready 100% FixedStepDiscrete

For more information on the accelerator modes in Simulink, see “Choosing a Simulation

Mode” (Simulink).
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Portable C Code Generation for Functions That Use

OpenCV Library

OpenCy-based functions |

[-I:nd&‘- generation using C++ u:urnpiler:a_— 3

Running the generated code requires OpenCV libraries

“1 MATLAE host mon-host target i
QpenCV fibraries provided using Pack-N-Go  OpenCl libraries must be provided Ffor specific target

The generated binary uses prebuilt OpenCV libraries that ship with the Computer Vision
Toolbox product. Your compiler must be compatible with the one used to build the
libraries. The following compilers are used to build the OpenCV libraries for MATLAB

host:

Operating System

Compatible Compiler

Windows 64 bit

Microsoft Visual Studio 2015 Professional or Visual Studio
2017

Linux 64 bit gcc-4.9.3 (g++)
Mac 64 bit Xcode 6.2.0 (Clang++)
Limitations

Computer Vision Toolbox functions that use the OpenCV library do not support target
code generation from Simulink.
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